| /* | 
 |  *  linux/arch/arm/mm/dma-mapping.c | 
 |  * | 
 |  *  Copyright (C) 2000-2004 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  *  DMA uncached mapping support. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/list.h> | 
 | #include <linux/init.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/highmem.h> | 
 |  | 
 | #include <asm/memory.h> | 
 | #include <asm/highmem.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/sizes.h> | 
 |  | 
 | #include "mm.h" | 
 |  | 
 | static u64 get_coherent_dma_mask(struct device *dev) | 
 | { | 
 | 	u64 mask = (u64)arm_dma_limit; | 
 |  | 
 | 	if (dev) { | 
 | 		mask = dev->coherent_dma_mask; | 
 |  | 
 | 		/* | 
 | 		 * Sanity check the DMA mask - it must be non-zero, and | 
 | 		 * must be able to be satisfied by a DMA allocation. | 
 | 		 */ | 
 | 		if (mask == 0) { | 
 | 			dev_warn(dev, "coherent DMA mask is unset\n"); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if ((~mask) & (u64)arm_dma_limit) { | 
 | 			dev_warn(dev, "coherent DMA mask %#llx is smaller " | 
 | 				 "than system GFP_DMA mask %#llx\n", | 
 | 				 mask, (u64)arm_dma_limit); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a DMA buffer for 'dev' of size 'size' using the | 
 |  * specified gfp mask.  Note that 'size' must be page aligned. | 
 |  */ | 
 | static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) | 
 | { | 
 | 	unsigned long order = get_order(size); | 
 | 	struct page *page, *p, *e; | 
 | 	void *ptr; | 
 | 	u64 mask = get_coherent_dma_mask(dev); | 
 |  | 
 | #ifdef CONFIG_DMA_API_DEBUG | 
 | 	u64 limit = (mask + 1) & ~mask; | 
 | 	if (limit && size >= limit) { | 
 | 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", | 
 | 			size, mask); | 
 | 		return NULL; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (!mask) | 
 | 		return NULL; | 
 |  | 
 | 	if (mask < 0xffffffffULL) | 
 | 		gfp |= GFP_DMA; | 
 |  | 
 | 	page = alloc_pages(gfp, order); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Now split the huge page and free the excess pages | 
 | 	 */ | 
 | 	split_page(page, order); | 
 | 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) | 
 | 		__free_page(p); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that the allocated pages are zeroed, and that any data | 
 | 	 * lurking in the kernel direct-mapped region is invalidated. | 
 | 	 */ | 
 | 	ptr = page_address(page); | 
 | 	memset(ptr, 0, size); | 
 | 	dmac_flush_range(ptr, ptr + size); | 
 | 	outer_flush_range(__pa(ptr), __pa(ptr) + size); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a DMA buffer.  'size' must be page aligned. | 
 |  */ | 
 | static void __dma_free_buffer(struct page *page, size_t size) | 
 | { | 
 | 	struct page *e = page + (size >> PAGE_SHIFT); | 
 |  | 
 | 	while (page < e) { | 
 | 		__free_page(page); | 
 | 		page++; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /* Sanity check size */ | 
 | #if (CONSISTENT_DMA_SIZE % SZ_2M) | 
 | #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB" | 
 | #endif | 
 |  | 
 | #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) | 
 | #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PMD_SHIFT) | 
 | #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PMD_SHIFT) | 
 |  | 
 | /* | 
 |  * These are the page tables (2MB each) covering uncached, DMA consistent allocations | 
 |  */ | 
 | static pte_t *consistent_pte[NUM_CONSISTENT_PTES]; | 
 |  | 
 | #include "vmregion.h" | 
 |  | 
 | static struct arm_vmregion_head consistent_head = { | 
 | 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock), | 
 | 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list), | 
 | 	.vm_start	= CONSISTENT_BASE, | 
 | 	.vm_end		= CONSISTENT_END, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | #error ARM Coherent DMA allocator does not (yet) support huge TLB | 
 | #endif | 
 |  | 
 | /* | 
 |  * Initialise the consistent memory allocation. | 
 |  */ | 
 | static int __init consistent_init(void) | 
 | { | 
 | 	int ret = 0; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	int i = 0; | 
 | 	u32 base = CONSISTENT_BASE; | 
 |  | 
 | 	do { | 
 | 		pgd = pgd_offset(&init_mm, base); | 
 |  | 
 | 		pud = pud_alloc(&init_mm, pgd, base); | 
 | 		if (!pud) { | 
 | 			printk(KERN_ERR "%s: no pud tables\n", __func__); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pmd = pmd_alloc(&init_mm, pud, base); | 
 | 		if (!pmd) { | 
 | 			printk(KERN_ERR "%s: no pmd tables\n", __func__); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 		WARN_ON(!pmd_none(*pmd)); | 
 |  | 
 | 		pte = pte_alloc_kernel(pmd, base); | 
 | 		if (!pte) { | 
 | 			printk(KERN_ERR "%s: no pte tables\n", __func__); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		consistent_pte[i++] = pte; | 
 | 		base += PMD_SIZE; | 
 | 	} while (base < CONSISTENT_END); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | core_initcall(consistent_init); | 
 |  | 
 | static void * | 
 | __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 | 	size_t align; | 
 | 	int bit; | 
 |  | 
 | 	if (!consistent_pte[0]) { | 
 | 		printk(KERN_ERR "%s: not initialised\n", __func__); | 
 | 		dump_stack(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Align the virtual region allocation - maximum alignment is | 
 | 	 * a section size, minimum is a page size.  This helps reduce | 
 | 	 * fragmentation of the DMA space, and also prevents allocations | 
 | 	 * smaller than a section from crossing a section boundary. | 
 | 	 */ | 
 | 	bit = fls(size - 1); | 
 | 	if (bit > SECTION_SHIFT) | 
 | 		bit = SECTION_SHIFT; | 
 | 	align = 1 << bit; | 
 |  | 
 | 	/* | 
 | 	 * Allocate a virtual address in the consistent mapping region. | 
 | 	 */ | 
 | 	c = arm_vmregion_alloc(&consistent_head, align, size, | 
 | 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); | 
 | 	if (c) { | 
 | 		pte_t *pte; | 
 | 		int idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
 | 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
 |  | 
 | 		pte = consistent_pte[idx] + off; | 
 | 		c->vm_pages = page; | 
 |  | 
 | 		do { | 
 | 			BUG_ON(!pte_none(*pte)); | 
 |  | 
 | 			set_pte_ext(pte, mk_pte(page, prot), 0); | 
 | 			page++; | 
 | 			pte++; | 
 | 			off++; | 
 | 			if (off >= PTRS_PER_PTE) { | 
 | 				off = 0; | 
 | 				pte = consistent_pte[++idx]; | 
 | 			} | 
 | 		} while (size -= PAGE_SIZE); | 
 |  | 
 | 		dsb(); | 
 |  | 
 | 		return (void *)c->vm_start; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __dma_free_remap(void *cpu_addr, size_t size) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 | 	unsigned long addr; | 
 | 	pte_t *ptep; | 
 | 	int idx; | 
 | 	u32 off; | 
 |  | 
 | 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr); | 
 | 	if (!c) { | 
 | 		printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", | 
 | 		       __func__, cpu_addr); | 
 | 		dump_stack(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((c->vm_end - c->vm_start) != size) { | 
 | 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", | 
 | 		       __func__, c->vm_end - c->vm_start, size); | 
 | 		dump_stack(); | 
 | 		size = c->vm_end - c->vm_start; | 
 | 	} | 
 |  | 
 | 	idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
 | 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
 | 	ptep = consistent_pte[idx] + off; | 
 | 	addr = c->vm_start; | 
 | 	do { | 
 | 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); | 
 |  | 
 | 		ptep++; | 
 | 		addr += PAGE_SIZE; | 
 | 		off++; | 
 | 		if (off >= PTRS_PER_PTE) { | 
 | 			off = 0; | 
 | 			ptep = consistent_pte[++idx]; | 
 | 		} | 
 |  | 
 | 		if (pte_none(pte) || !pte_present(pte)) | 
 | 			printk(KERN_CRIT "%s: bad page in kernel page table\n", | 
 | 			       __func__); | 
 | 	} while (size -= PAGE_SIZE); | 
 |  | 
 | 	flush_tlb_kernel_range(c->vm_start, c->vm_end); | 
 |  | 
 | 	arm_vmregion_free(&consistent_head, c); | 
 | } | 
 |  | 
 | #else	/* !CONFIG_MMU */ | 
 |  | 
 | #define __dma_alloc_remap(page, size, gfp, prot)	page_address(page) | 
 | #define __dma_free_remap(addr, size)			do { } while (0) | 
 |  | 
 | #endif	/* CONFIG_MMU */ | 
 |  | 
 | static void * | 
 | __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, | 
 | 	    pgprot_t prot) | 
 | { | 
 | 	struct page *page; | 
 | 	void *addr; | 
 |  | 
 | 	*handle = ~0; | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	page = __dma_alloc_buffer(dev, size, gfp); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	if (!arch_is_coherent()) | 
 | 		addr = __dma_alloc_remap(page, size, gfp, prot); | 
 | 	else | 
 | 		addr = page_address(page); | 
 |  | 
 | 	if (addr) | 
 | 		*handle = pfn_to_dma(dev, page_to_pfn(page)); | 
 | 	else | 
 | 		__dma_free_buffer(page, size); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate DMA-coherent memory space and return both the kernel remapped | 
 |  * virtual and bus address for that space. | 
 |  */ | 
 | void * | 
 | dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | 
 | { | 
 | 	void *memory; | 
 |  | 
 | 	if (dma_alloc_from_coherent(dev, size, handle, &memory)) | 
 | 		return memory; | 
 |  | 
 | 	return __dma_alloc(dev, size, handle, gfp, | 
 | 			   pgprot_dmacoherent(pgprot_kernel)); | 
 | } | 
 | EXPORT_SYMBOL(dma_alloc_coherent); | 
 |  | 
 | /* | 
 |  * Allocate a writecombining region, in much the same way as | 
 |  * dma_alloc_coherent above. | 
 |  */ | 
 | void * | 
 | dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp) | 
 | { | 
 | 	return __dma_alloc(dev, size, handle, gfp, | 
 | 			   pgprot_writecombine(pgprot_kernel)); | 
 | } | 
 | EXPORT_SYMBOL(dma_alloc_writecombine); | 
 |  | 
 | static int dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
 | 		    void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
 | { | 
 | 	int ret = -ENXIO; | 
 | #ifdef CONFIG_MMU | 
 | 	unsigned long user_size, kern_size; | 
 | 	struct arm_vmregion *c; | 
 |  | 
 | 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
 |  | 
 | 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); | 
 | 	if (c) { | 
 | 		unsigned long off = vma->vm_pgoff; | 
 |  | 
 | 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT; | 
 |  | 
 | 		if (off < kern_size && | 
 | 		    user_size <= (kern_size - off)) { | 
 | 			ret = remap_pfn_range(vma, vma->vm_start, | 
 | 					      page_to_pfn(c->vm_pages) + off, | 
 | 					      user_size << PAGE_SHIFT, | 
 | 					      vma->vm_page_prot); | 
 | 		} | 
 | 	} | 
 | #endif	/* CONFIG_MMU */ | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma, | 
 | 		      void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
 | { | 
 | 	vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot); | 
 | 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | 
 | } | 
 | EXPORT_SYMBOL(dma_mmap_coherent); | 
 |  | 
 | int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma, | 
 | 			  void *cpu_addr, dma_addr_t dma_addr, size_t size) | 
 | { | 
 | 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); | 
 | 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size); | 
 | } | 
 | EXPORT_SYMBOL(dma_mmap_writecombine); | 
 |  | 
 | /* | 
 |  * free a page as defined by the above mapping. | 
 |  * Must not be called with IRQs disabled. | 
 |  */ | 
 | void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle) | 
 | { | 
 | 	WARN_ON(irqs_disabled()); | 
 |  | 
 | 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) | 
 | 		return; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_free_remap(cpu_addr, size); | 
 |  | 
 | 	__dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size); | 
 | } | 
 | EXPORT_SYMBOL(dma_free_coherent); | 
 |  | 
 | /* | 
 |  * Make an area consistent for devices. | 
 |  * Note: Drivers should NOT use this function directly, as it will break | 
 |  * platforms with CONFIG_DMABOUNCE. | 
 |  * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | 
 |  */ | 
 | void ___dma_single_cpu_to_dev(const void *kaddr, size_t size, | 
 | 	enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long paddr; | 
 |  | 
 | 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); | 
 |  | 
 | 	dmac_map_area(kaddr, size, dir); | 
 |  | 
 | 	paddr = __pa(kaddr); | 
 | 	if (dir == DMA_FROM_DEVICE) { | 
 | 		outer_inv_range(paddr, paddr + size); | 
 | 	} else { | 
 | 		outer_clean_range(paddr, paddr + size); | 
 | 	} | 
 | 	/* FIXME: non-speculating: flush on bidirectional mappings? */ | 
 | } | 
 | EXPORT_SYMBOL(___dma_single_cpu_to_dev); | 
 |  | 
 | void ___dma_single_dev_to_cpu(const void *kaddr, size_t size, | 
 | 	enum dma_data_direction dir) | 
 | { | 
 | 	BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1)); | 
 |  | 
 | 	/* FIXME: non-speculating: not required */ | 
 | 	/* don't bother invalidating if DMA to device */ | 
 | 	if (dir != DMA_TO_DEVICE) { | 
 | 		unsigned long paddr = __pa(kaddr); | 
 | 		outer_inv_range(paddr, paddr + size); | 
 | 	} | 
 |  | 
 | 	dmac_unmap_area(kaddr, size, dir); | 
 | } | 
 | EXPORT_SYMBOL(___dma_single_dev_to_cpu); | 
 |  | 
 | static void dma_cache_maint_page(struct page *page, unsigned long offset, | 
 | 	size_t size, enum dma_data_direction dir, | 
 | 	void (*op)(const void *, size_t, int)) | 
 | { | 
 | 	/* | 
 | 	 * A single sg entry may refer to multiple physically contiguous | 
 | 	 * pages.  But we still need to process highmem pages individually. | 
 | 	 * If highmem is not configured then the bulk of this loop gets | 
 | 	 * optimized out. | 
 | 	 */ | 
 | 	size_t left = size; | 
 | 	do { | 
 | 		size_t len = left; | 
 | 		void *vaddr; | 
 |  | 
 | 		if (PageHighMem(page)) { | 
 | 			if (len + offset > PAGE_SIZE) { | 
 | 				if (offset >= PAGE_SIZE) { | 
 | 					page += offset / PAGE_SIZE; | 
 | 					offset %= PAGE_SIZE; | 
 | 				} | 
 | 				len = PAGE_SIZE - offset; | 
 | 			} | 
 | 			vaddr = kmap_high_get(page); | 
 | 			if (vaddr) { | 
 | 				vaddr += offset; | 
 | 				op(vaddr, len, dir); | 
 | 				kunmap_high(page); | 
 | 			} else if (cache_is_vipt()) { | 
 | 				/* unmapped pages might still be cached */ | 
 | 				vaddr = kmap_atomic(page); | 
 | 				op(vaddr + offset, len, dir); | 
 | 				kunmap_atomic(vaddr); | 
 | 			} | 
 | 		} else { | 
 | 			vaddr = page_address(page) + offset; | 
 | 			op(vaddr, len, dir); | 
 | 		} | 
 | 		offset = 0; | 
 | 		page++; | 
 | 		left -= len; | 
 | 	} while (left); | 
 | } | 
 |  | 
 | void ___dma_page_cpu_to_dev(struct page *page, unsigned long off, | 
 | 	size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long paddr; | 
 |  | 
 | 	dma_cache_maint_page(page, off, size, dir, dmac_map_area); | 
 |  | 
 | 	paddr = page_to_phys(page) + off; | 
 | 	if (dir == DMA_FROM_DEVICE) { | 
 | 		outer_inv_range(paddr, paddr + size); | 
 | 	} else { | 
 | 		outer_clean_range(paddr, paddr + size); | 
 | 	} | 
 | 	/* FIXME: non-speculating: flush on bidirectional mappings? */ | 
 | } | 
 | EXPORT_SYMBOL(___dma_page_cpu_to_dev); | 
 |  | 
 | void ___dma_page_dev_to_cpu(struct page *page, unsigned long off, | 
 | 	size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long paddr = page_to_phys(page) + off; | 
 |  | 
 | 	/* FIXME: non-speculating: not required */ | 
 | 	/* don't bother invalidating if DMA to device */ | 
 | 	if (dir != DMA_TO_DEVICE) | 
 | 		outer_inv_range(paddr, paddr + size); | 
 |  | 
 | 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); | 
 |  | 
 | 	/* | 
 | 	 * Mark the D-cache clean for this page to avoid extra flushing. | 
 | 	 */ | 
 | 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) | 
 | 		set_bit(PG_dcache_clean, &page->flags); | 
 | } | 
 | EXPORT_SYMBOL(___dma_page_dev_to_cpu); | 
 |  | 
 | /** | 
 |  * dma_map_sg - map a set of SG buffers for streaming mode DMA | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
 |  * This is the scatter-gather version of the dma_map_single interface. | 
 |  * Here the scatter gather list elements are each tagged with the | 
 |  * appropriate dma address and length.  They are obtained via | 
 |  * sg_dma_{address,length}. | 
 |  * | 
 |  * Device ownership issues as mentioned for dma_map_single are the same | 
 |  * here. | 
 |  */ | 
 | int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i, j; | 
 |  | 
 | 	BUG_ON(!valid_dma_direction(dir)); | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		s->dma_address = __dma_map_page(dev, sg_page(s), s->offset, | 
 | 						s->length, dir); | 
 | 		if (dma_mapping_error(dev, s->dma_address)) | 
 | 			goto bad_mapping; | 
 | 	} | 
 | 	debug_dma_map_sg(dev, sg, nents, nents, dir); | 
 | 	return nents; | 
 |  | 
 |  bad_mapping: | 
 | 	for_each_sg(sg, s, i, j) | 
 | 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(dma_map_sg); | 
 |  | 
 | /** | 
 |  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  * | 
 |  * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
 |  * rules concerning calls here are the same as for dma_unmap_single(). | 
 |  */ | 
 | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	debug_dma_unmap_sg(dev, sg, nents, dir); | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		__dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_unmap_sg); | 
 |  | 
 | /** | 
 |  * dma_sync_sg_for_cpu | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0, | 
 | 					    sg_dma_len(s), dir)) | 
 | 			continue; | 
 |  | 
 | 		__dma_page_dev_to_cpu(sg_page(s), s->offset, | 
 | 				      s->length, dir); | 
 | 	} | 
 |  | 
 | 	debug_dma_sync_sg_for_cpu(dev, sg, nents, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | 
 |  | 
 | /** | 
 |  * dma_sync_sg_for_device | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0, | 
 | 					sg_dma_len(s), dir)) | 
 | 			continue; | 
 |  | 
 | 		__dma_page_cpu_to_dev(sg_page(s), s->offset, | 
 | 				      s->length, dir); | 
 | 	} | 
 |  | 
 | 	debug_dma_sync_sg_for_device(dev, sg, nents, dir); | 
 | } | 
 | EXPORT_SYMBOL(dma_sync_sg_for_device); | 
 |  | 
 | /* | 
 |  * Return whether the given device DMA address mask can be supported | 
 |  * properly.  For example, if your device can only drive the low 24-bits | 
 |  * during bus mastering, then you would pass 0x00ffffff as the mask | 
 |  * to this function. | 
 |  */ | 
 | int dma_supported(struct device *dev, u64 mask) | 
 | { | 
 | 	if (mask < (u64)arm_dma_limit) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(dma_supported); | 
 |  | 
 | int dma_set_mask(struct device *dev, u64 dma_mask) | 
 | { | 
 | 	if (!dev->dma_mask || !dma_supported(dev, dma_mask)) | 
 | 		return -EIO; | 
 |  | 
 | #ifndef CONFIG_DMABOUNCE | 
 | 	*dev->dma_mask = dma_mask; | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(dma_set_mask); | 
 |  | 
 | #define PREALLOC_DMA_DEBUG_ENTRIES	4096 | 
 |  | 
 | static int __init dma_debug_do_init(void) | 
 | { | 
 | 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); | 
 | 	return 0; | 
 | } | 
 | fs_initcall(dma_debug_do_init); |