| /* | 
 |  * NVM Express device driver | 
 |  * Copyright (c) 2011-2014, Intel Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/hdreg.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/types.h> | 
 | #include <linux/pr.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/nvme_ioctl.h> | 
 | #include <linux/t10-pi.h> | 
 | #include <linux/pm_qos.h> | 
 | #include <asm/unaligned.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include "trace.h" | 
 |  | 
 | #include "nvme.h" | 
 | #include "fabrics.h" | 
 |  | 
 | #define NVME_MINORS		(1U << MINORBITS) | 
 |  | 
 | unsigned int admin_timeout = 60; | 
 | module_param(admin_timeout, uint, 0644); | 
 | MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); | 
 | EXPORT_SYMBOL_GPL(admin_timeout); | 
 |  | 
 | unsigned int nvme_io_timeout = 30; | 
 | module_param_named(io_timeout, nvme_io_timeout, uint, 0644); | 
 | MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); | 
 | EXPORT_SYMBOL_GPL(nvme_io_timeout); | 
 |  | 
 | static unsigned char shutdown_timeout = 5; | 
 | module_param(shutdown_timeout, byte, 0644); | 
 | MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); | 
 |  | 
 | static u8 nvme_max_retries = 5; | 
 | module_param_named(max_retries, nvme_max_retries, byte, 0644); | 
 | MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); | 
 |  | 
 | static unsigned long default_ps_max_latency_us = 100000; | 
 | module_param(default_ps_max_latency_us, ulong, 0644); | 
 | MODULE_PARM_DESC(default_ps_max_latency_us, | 
 | 		 "max power saving latency for new devices; use PM QOS to change per device"); | 
 |  | 
 | static bool force_apst; | 
 | module_param(force_apst, bool, 0644); | 
 | MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); | 
 |  | 
 | static bool streams; | 
 | module_param(streams, bool, 0644); | 
 | MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); | 
 |  | 
 | /* | 
 |  * nvme_wq - hosts nvme related works that are not reset or delete | 
 |  * nvme_reset_wq - hosts nvme reset works | 
 |  * nvme_delete_wq - hosts nvme delete works | 
 |  * | 
 |  * nvme_wq will host works such are scan, aen handling, fw activation, | 
 |  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq | 
 |  * runs reset works which also flush works hosted on nvme_wq for | 
 |  * serialization purposes. nvme_delete_wq host controller deletion | 
 |  * works which flush reset works for serialization. | 
 |  */ | 
 | struct workqueue_struct *nvme_wq; | 
 | EXPORT_SYMBOL_GPL(nvme_wq); | 
 |  | 
 | struct workqueue_struct *nvme_reset_wq; | 
 | EXPORT_SYMBOL_GPL(nvme_reset_wq); | 
 |  | 
 | struct workqueue_struct *nvme_delete_wq; | 
 | EXPORT_SYMBOL_GPL(nvme_delete_wq); | 
 |  | 
 | static DEFINE_IDA(nvme_subsystems_ida); | 
 | static LIST_HEAD(nvme_subsystems); | 
 | static DEFINE_MUTEX(nvme_subsystems_lock); | 
 |  | 
 | static DEFINE_IDA(nvme_instance_ida); | 
 | static dev_t nvme_chr_devt; | 
 | static struct class *nvme_class; | 
 | static struct class *nvme_subsys_class; | 
 |  | 
 | static void nvme_ns_remove(struct nvme_ns *ns); | 
 | static int nvme_revalidate_disk(struct gendisk *disk); | 
 | static void nvme_put_subsystem(struct nvme_subsystem *subsys); | 
 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, | 
 | 					   unsigned nsid); | 
 |  | 
 | static void nvme_set_queue_dying(struct nvme_ns *ns) | 
 | { | 
 | 	/* | 
 | 	 * Revalidating a dead namespace sets capacity to 0. This will end | 
 | 	 * buffered writers dirtying pages that can't be synced. | 
 | 	 */ | 
 | 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) | 
 | 		return; | 
 | 	revalidate_disk(ns->disk); | 
 | 	blk_set_queue_dying(ns->queue); | 
 | 	/* Forcibly unquiesce queues to avoid blocking dispatch */ | 
 | 	blk_mq_unquiesce_queue(ns->queue); | 
 | } | 
 |  | 
 | static void nvme_queue_scan(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	/* | 
 | 	 * Only new queue scan work when admin and IO queues are both alive | 
 | 	 */ | 
 | 	if (ctrl->state == NVME_CTRL_LIVE) | 
 | 		queue_work(nvme_wq, &ctrl->scan_work); | 
 | } | 
 |  | 
 | int nvme_reset_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) | 
 | 		return -EBUSY; | 
 | 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) | 
 | 		return -EBUSY; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_reset_ctrl); | 
 |  | 
 | int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = nvme_reset_ctrl(ctrl); | 
 | 	if (!ret) { | 
 | 		flush_work(&ctrl->reset_work); | 
 | 		if (ctrl->state != NVME_CTRL_LIVE && | 
 | 		    ctrl->state != NVME_CTRL_ADMIN_ONLY) | 
 | 			ret = -ENETRESET; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); | 
 |  | 
 | static void nvme_delete_ctrl_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = | 
 | 		container_of(work, struct nvme_ctrl, delete_work); | 
 |  | 
 | 	dev_info(ctrl->device, | 
 | 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); | 
 |  | 
 | 	flush_work(&ctrl->reset_work); | 
 | 	nvme_stop_ctrl(ctrl); | 
 | 	nvme_remove_namespaces(ctrl); | 
 | 	ctrl->ops->delete_ctrl(ctrl); | 
 | 	nvme_uninit_ctrl(ctrl); | 
 | 	nvme_put_ctrl(ctrl); | 
 | } | 
 |  | 
 | int nvme_delete_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) | 
 | 		return -EBUSY; | 
 | 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) | 
 | 		return -EBUSY; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_delete_ctrl); | 
 |  | 
 | int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Keep a reference until the work is flushed since ->delete_ctrl | 
 | 	 * can free the controller. | 
 | 	 */ | 
 | 	nvme_get_ctrl(ctrl); | 
 | 	ret = nvme_delete_ctrl(ctrl); | 
 | 	if (!ret) | 
 | 		flush_work(&ctrl->delete_work); | 
 | 	nvme_put_ctrl(ctrl); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); | 
 |  | 
 | static inline bool nvme_ns_has_pi(struct nvme_ns *ns) | 
 | { | 
 | 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); | 
 | } | 
 |  | 
 | static blk_status_t nvme_error_status(struct request *req) | 
 | { | 
 | 	switch (nvme_req(req)->status & 0x7ff) { | 
 | 	case NVME_SC_SUCCESS: | 
 | 		return BLK_STS_OK; | 
 | 	case NVME_SC_CAP_EXCEEDED: | 
 | 		return BLK_STS_NOSPC; | 
 | 	case NVME_SC_LBA_RANGE: | 
 | 		return BLK_STS_TARGET; | 
 | 	case NVME_SC_BAD_ATTRIBUTES: | 
 | 	case NVME_SC_ONCS_NOT_SUPPORTED: | 
 | 	case NVME_SC_INVALID_OPCODE: | 
 | 	case NVME_SC_INVALID_FIELD: | 
 | 	case NVME_SC_INVALID_NS: | 
 | 		return BLK_STS_NOTSUPP; | 
 | 	case NVME_SC_WRITE_FAULT: | 
 | 	case NVME_SC_READ_ERROR: | 
 | 	case NVME_SC_UNWRITTEN_BLOCK: | 
 | 	case NVME_SC_ACCESS_DENIED: | 
 | 	case NVME_SC_READ_ONLY: | 
 | 	case NVME_SC_COMPARE_FAILED: | 
 | 		return BLK_STS_MEDIUM; | 
 | 	case NVME_SC_GUARD_CHECK: | 
 | 	case NVME_SC_APPTAG_CHECK: | 
 | 	case NVME_SC_REFTAG_CHECK: | 
 | 	case NVME_SC_INVALID_PI: | 
 | 		return BLK_STS_PROTECTION; | 
 | 	case NVME_SC_RESERVATION_CONFLICT: | 
 | 		return BLK_STS_NEXUS; | 
 | 	default: | 
 | 		return BLK_STS_IOERR; | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool nvme_req_needs_retry(struct request *req) | 
 | { | 
 | 	if (blk_noretry_request(req)) | 
 | 		return false; | 
 | 	if (nvme_req(req)->status & NVME_SC_DNR) | 
 | 		return false; | 
 | 	if (nvme_req(req)->retries >= nvme_max_retries) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | void nvme_complete_rq(struct request *req) | 
 | { | 
 | 	blk_status_t status = nvme_error_status(req); | 
 |  | 
 | 	trace_nvme_complete_rq(req); | 
 |  | 
 | 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { | 
 | 		if ((req->cmd_flags & REQ_NVME_MPATH) && | 
 | 		    blk_path_error(status)) { | 
 | 			nvme_failover_req(req); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (!blk_queue_dying(req->q)) { | 
 | 			nvme_req(req)->retries++; | 
 | 			blk_mq_requeue_request(req, true); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	blk_mq_end_request(req, status); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_complete_rq); | 
 |  | 
 | void nvme_cancel_request(struct request *req, void *data, bool reserved) | 
 | { | 
 | 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, | 
 | 				"Cancelling I/O %d", req->tag); | 
 |  | 
 | 	nvme_req(req)->status = NVME_SC_ABORT_REQ; | 
 | 	blk_mq_complete_request(req); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_cancel_request); | 
 |  | 
 | bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, | 
 | 		enum nvme_ctrl_state new_state) | 
 | { | 
 | 	enum nvme_ctrl_state old_state; | 
 | 	unsigned long flags; | 
 | 	bool changed = false; | 
 |  | 
 | 	spin_lock_irqsave(&ctrl->lock, flags); | 
 |  | 
 | 	old_state = ctrl->state; | 
 | 	switch (new_state) { | 
 | 	case NVME_CTRL_ADMIN_ONLY: | 
 | 		switch (old_state) { | 
 | 		case NVME_CTRL_CONNECTING: | 
 | 			changed = true; | 
 | 			/* FALLTHRU */ | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case NVME_CTRL_LIVE: | 
 | 		switch (old_state) { | 
 | 		case NVME_CTRL_NEW: | 
 | 		case NVME_CTRL_RESETTING: | 
 | 		case NVME_CTRL_CONNECTING: | 
 | 			changed = true; | 
 | 			/* FALLTHRU */ | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case NVME_CTRL_RESETTING: | 
 | 		switch (old_state) { | 
 | 		case NVME_CTRL_NEW: | 
 | 		case NVME_CTRL_LIVE: | 
 | 		case NVME_CTRL_ADMIN_ONLY: | 
 | 			changed = true; | 
 | 			/* FALLTHRU */ | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case NVME_CTRL_CONNECTING: | 
 | 		switch (old_state) { | 
 | 		case NVME_CTRL_NEW: | 
 | 		case NVME_CTRL_RESETTING: | 
 | 			changed = true; | 
 | 			/* FALLTHRU */ | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case NVME_CTRL_DELETING: | 
 | 		switch (old_state) { | 
 | 		case NVME_CTRL_LIVE: | 
 | 		case NVME_CTRL_ADMIN_ONLY: | 
 | 		case NVME_CTRL_RESETTING: | 
 | 		case NVME_CTRL_CONNECTING: | 
 | 			changed = true; | 
 | 			/* FALLTHRU */ | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case NVME_CTRL_DEAD: | 
 | 		switch (old_state) { | 
 | 		case NVME_CTRL_DELETING: | 
 | 			changed = true; | 
 | 			/* FALLTHRU */ | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (changed) | 
 | 		ctrl->state = new_state; | 
 |  | 
 | 	spin_unlock_irqrestore(&ctrl->lock, flags); | 
 | 	if (changed && ctrl->state == NVME_CTRL_LIVE) | 
 | 		nvme_kick_requeue_lists(ctrl); | 
 | 	return changed; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); | 
 |  | 
 | static void nvme_free_ns_head(struct kref *ref) | 
 | { | 
 | 	struct nvme_ns_head *head = | 
 | 		container_of(ref, struct nvme_ns_head, ref); | 
 |  | 
 | 	nvme_mpath_remove_disk(head); | 
 | 	ida_simple_remove(&head->subsys->ns_ida, head->instance); | 
 | 	list_del_init(&head->entry); | 
 | 	cleanup_srcu_struct_quiesced(&head->srcu); | 
 | 	nvme_put_subsystem(head->subsys); | 
 | 	kfree(head); | 
 | } | 
 |  | 
 | static void nvme_put_ns_head(struct nvme_ns_head *head) | 
 | { | 
 | 	kref_put(&head->ref, nvme_free_ns_head); | 
 | } | 
 |  | 
 | static void nvme_free_ns(struct kref *kref) | 
 | { | 
 | 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); | 
 |  | 
 | 	if (ns->ndev) | 
 | 		nvme_nvm_unregister(ns); | 
 |  | 
 | 	put_disk(ns->disk); | 
 | 	nvme_put_ns_head(ns->head); | 
 | 	nvme_put_ctrl(ns->ctrl); | 
 | 	kfree(ns); | 
 | } | 
 |  | 
 | static void nvme_put_ns(struct nvme_ns *ns) | 
 | { | 
 | 	kref_put(&ns->kref, nvme_free_ns); | 
 | } | 
 |  | 
 | static inline void nvme_clear_nvme_request(struct request *req) | 
 | { | 
 | 	if (!(req->rq_flags & RQF_DONTPREP)) { | 
 | 		nvme_req(req)->retries = 0; | 
 | 		nvme_req(req)->flags = 0; | 
 | 		req->rq_flags |= RQF_DONTPREP; | 
 | 	} | 
 | } | 
 |  | 
 | struct request *nvme_alloc_request(struct request_queue *q, | 
 | 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) | 
 | { | 
 | 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; | 
 | 	struct request *req; | 
 |  | 
 | 	if (qid == NVME_QID_ANY) { | 
 | 		req = blk_mq_alloc_request(q, op, flags); | 
 | 	} else { | 
 | 		req = blk_mq_alloc_request_hctx(q, op, flags, | 
 | 				qid ? qid - 1 : 0); | 
 | 	} | 
 | 	if (IS_ERR(req)) | 
 | 		return req; | 
 |  | 
 | 	req->cmd_flags |= REQ_FAILFAST_DRIVER; | 
 | 	nvme_clear_nvme_request(req); | 
 | 	nvme_req(req)->cmd = cmd; | 
 |  | 
 | 	return req; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_alloc_request); | 
 |  | 
 | static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) | 
 | { | 
 | 	struct nvme_command c; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 |  | 
 | 	c.directive.opcode = nvme_admin_directive_send; | 
 | 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); | 
 | 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; | 
 | 	c.directive.dtype = NVME_DIR_IDENTIFY; | 
 | 	c.directive.tdtype = NVME_DIR_STREAMS; | 
 | 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0; | 
 |  | 
 | 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); | 
 | } | 
 |  | 
 | static int nvme_disable_streams(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	return nvme_toggle_streams(ctrl, false); | 
 | } | 
 |  | 
 | static int nvme_enable_streams(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	return nvme_toggle_streams(ctrl, true); | 
 | } | 
 |  | 
 | static int nvme_get_stream_params(struct nvme_ctrl *ctrl, | 
 | 				  struct streams_directive_params *s, u32 nsid) | 
 | { | 
 | 	struct nvme_command c; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	memset(s, 0, sizeof(*s)); | 
 |  | 
 | 	c.directive.opcode = nvme_admin_directive_recv; | 
 | 	c.directive.nsid = cpu_to_le32(nsid); | 
 | 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); | 
 | 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; | 
 | 	c.directive.dtype = NVME_DIR_STREAMS; | 
 |  | 
 | 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); | 
 | } | 
 |  | 
 | static int nvme_configure_directives(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct streams_directive_params s; | 
 | 	int ret; | 
 |  | 
 | 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) | 
 | 		return 0; | 
 | 	if (!streams) | 
 | 		return 0; | 
 |  | 
 | 	ret = nvme_enable_streams(ctrl); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ctrl->nssa = le16_to_cpu(s.nssa); | 
 | 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { | 
 | 		dev_info(ctrl->device, "too few streams (%u) available\n", | 
 | 					ctrl->nssa); | 
 | 		nvme_disable_streams(ctrl); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); | 
 | 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if 'req' has a write hint associated with it. If it does, assign | 
 |  * a valid namespace stream to the write. | 
 |  */ | 
 | static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, | 
 | 				     struct request *req, u16 *control, | 
 | 				     u32 *dsmgmt) | 
 | { | 
 | 	enum rw_hint streamid = req->write_hint; | 
 |  | 
 | 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) | 
 | 		streamid = 0; | 
 | 	else { | 
 | 		streamid--; | 
 | 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) | 
 | 			return; | 
 |  | 
 | 		*control |= NVME_RW_DTYPE_STREAMS; | 
 | 		*dsmgmt |= streamid << 16; | 
 | 	} | 
 |  | 
 | 	if (streamid < ARRAY_SIZE(req->q->write_hints)) | 
 | 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; | 
 | } | 
 |  | 
 | static inline void nvme_setup_flush(struct nvme_ns *ns, | 
 | 		struct nvme_command *cmnd) | 
 | { | 
 | 	memset(cmnd, 0, sizeof(*cmnd)); | 
 | 	cmnd->common.opcode = nvme_cmd_flush; | 
 | 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); | 
 | } | 
 |  | 
 | static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, | 
 | 		struct nvme_command *cmnd) | 
 | { | 
 | 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; | 
 | 	struct nvme_dsm_range *range; | 
 | 	struct bio *bio; | 
 |  | 
 | 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); | 
 | 	if (!range) | 
 | 		return BLK_STS_RESOURCE; | 
 |  | 
 | 	__rq_for_each_bio(bio, req) { | 
 | 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); | 
 | 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; | 
 |  | 
 | 		if (n < segments) { | 
 | 			range[n].cattr = cpu_to_le32(0); | 
 | 			range[n].nlb = cpu_to_le32(nlb); | 
 | 			range[n].slba = cpu_to_le64(slba); | 
 | 		} | 
 | 		n++; | 
 | 	} | 
 |  | 
 | 	if (WARN_ON_ONCE(n != segments)) { | 
 | 		kfree(range); | 
 | 		return BLK_STS_IOERR; | 
 | 	} | 
 |  | 
 | 	memset(cmnd, 0, sizeof(*cmnd)); | 
 | 	cmnd->dsm.opcode = nvme_cmd_dsm; | 
 | 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); | 
 | 	cmnd->dsm.nr = cpu_to_le32(segments - 1); | 
 | 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); | 
 |  | 
 | 	req->special_vec.bv_page = virt_to_page(range); | 
 | 	req->special_vec.bv_offset = offset_in_page(range); | 
 | 	req->special_vec.bv_len = sizeof(*range) * segments; | 
 | 	req->rq_flags |= RQF_SPECIAL_PAYLOAD; | 
 |  | 
 | 	return BLK_STS_OK; | 
 | } | 
 |  | 
 | static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, | 
 | 		struct request *req, struct nvme_command *cmnd) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = ns->ctrl; | 
 | 	u16 control = 0; | 
 | 	u32 dsmgmt = 0; | 
 |  | 
 | 	if (req->cmd_flags & REQ_FUA) | 
 | 		control |= NVME_RW_FUA; | 
 | 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) | 
 | 		control |= NVME_RW_LR; | 
 |  | 
 | 	if (req->cmd_flags & REQ_RAHEAD) | 
 | 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; | 
 |  | 
 | 	memset(cmnd, 0, sizeof(*cmnd)); | 
 | 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); | 
 | 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); | 
 | 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); | 
 | 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); | 
 |  | 
 | 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) | 
 | 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); | 
 |  | 
 | 	if (ns->ms) { | 
 | 		/* | 
 | 		 * If formated with metadata, the block layer always provides a | 
 | 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else | 
 | 		 * we enable the PRACT bit for protection information or set the | 
 | 		 * namespace capacity to zero to prevent any I/O. | 
 | 		 */ | 
 | 		if (!blk_integrity_rq(req)) { | 
 | 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) | 
 | 				return BLK_STS_NOTSUPP; | 
 | 			control |= NVME_RW_PRINFO_PRACT; | 
 | 		} else if (req_op(req) == REQ_OP_WRITE) { | 
 | 			t10_pi_prepare(req, ns->pi_type); | 
 | 		} | 
 |  | 
 | 		switch (ns->pi_type) { | 
 | 		case NVME_NS_DPS_PI_TYPE3: | 
 | 			control |= NVME_RW_PRINFO_PRCHK_GUARD; | 
 | 			break; | 
 | 		case NVME_NS_DPS_PI_TYPE1: | 
 | 		case NVME_NS_DPS_PI_TYPE2: | 
 | 			control |= NVME_RW_PRINFO_PRCHK_GUARD | | 
 | 					NVME_RW_PRINFO_PRCHK_REF; | 
 | 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cmnd->rw.control = cpu_to_le16(control); | 
 | 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void nvme_cleanup_cmd(struct request *req) | 
 | { | 
 | 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && | 
 | 	    nvme_req(req)->status == 0) { | 
 | 		struct nvme_ns *ns = req->rq_disk->private_data; | 
 |  | 
 | 		t10_pi_complete(req, ns->pi_type, | 
 | 				blk_rq_bytes(req) >> ns->lba_shift); | 
 | 	} | 
 | 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { | 
 | 		kfree(page_address(req->special_vec.bv_page) + | 
 | 		      req->special_vec.bv_offset); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); | 
 |  | 
 | blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, | 
 | 		struct nvme_command *cmd) | 
 | { | 
 | 	blk_status_t ret = BLK_STS_OK; | 
 |  | 
 | 	nvme_clear_nvme_request(req); | 
 |  | 
 | 	switch (req_op(req)) { | 
 | 	case REQ_OP_DRV_IN: | 
 | 	case REQ_OP_DRV_OUT: | 
 | 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); | 
 | 		break; | 
 | 	case REQ_OP_FLUSH: | 
 | 		nvme_setup_flush(ns, cmd); | 
 | 		break; | 
 | 	case REQ_OP_WRITE_ZEROES: | 
 | 		/* currently only aliased to deallocate for a few ctrls: */ | 
 | 	case REQ_OP_DISCARD: | 
 | 		ret = nvme_setup_discard(ns, req, cmd); | 
 | 		break; | 
 | 	case REQ_OP_READ: | 
 | 	case REQ_OP_WRITE: | 
 | 		ret = nvme_setup_rw(ns, req, cmd); | 
 | 		break; | 
 | 	default: | 
 | 		WARN_ON_ONCE(1); | 
 | 		return BLK_STS_IOERR; | 
 | 	} | 
 |  | 
 | 	cmd->common.command_id = req->tag; | 
 | 	trace_nvme_setup_cmd(req, cmd); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_setup_cmd); | 
 |  | 
 | /* | 
 |  * Returns 0 on success.  If the result is negative, it's a Linux error code; | 
 |  * if the result is positive, it's an NVM Express status code | 
 |  */ | 
 | int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, | 
 | 		union nvme_result *result, void *buffer, unsigned bufflen, | 
 | 		unsigned timeout, int qid, int at_head, | 
 | 		blk_mq_req_flags_t flags) | 
 | { | 
 | 	struct request *req; | 
 | 	int ret; | 
 |  | 
 | 	req = nvme_alloc_request(q, cmd, flags, qid); | 
 | 	if (IS_ERR(req)) | 
 | 		return PTR_ERR(req); | 
 |  | 
 | 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT; | 
 |  | 
 | 	if (buffer && bufflen) { | 
 | 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	blk_execute_rq(req->q, NULL, req, at_head); | 
 | 	if (result) | 
 | 		*result = nvme_req(req)->result; | 
 | 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED) | 
 | 		ret = -EINTR; | 
 | 	else | 
 | 		ret = nvme_req(req)->status; | 
 |  out: | 
 | 	blk_mq_free_request(req); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); | 
 |  | 
 | int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, | 
 | 		void *buffer, unsigned bufflen) | 
 | { | 
 | 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, | 
 | 			NVME_QID_ANY, 0, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); | 
 |  | 
 | static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, | 
 | 		unsigned len, u32 seed, bool write) | 
 | { | 
 | 	struct bio_integrity_payload *bip; | 
 | 	int ret = -ENOMEM; | 
 | 	void *buf; | 
 |  | 
 | 	buf = kmalloc(len, GFP_KERNEL); | 
 | 	if (!buf) | 
 | 		goto out; | 
 |  | 
 | 	ret = -EFAULT; | 
 | 	if (write && copy_from_user(buf, ubuf, len)) | 
 | 		goto out_free_meta; | 
 |  | 
 | 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); | 
 | 	if (IS_ERR(bip)) { | 
 | 		ret = PTR_ERR(bip); | 
 | 		goto out_free_meta; | 
 | 	} | 
 |  | 
 | 	bip->bip_iter.bi_size = len; | 
 | 	bip->bip_iter.bi_sector = seed; | 
 | 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len, | 
 | 			offset_in_page(buf)); | 
 | 	if (ret == len) | 
 | 		return buf; | 
 | 	ret = -ENOMEM; | 
 | out_free_meta: | 
 | 	kfree(buf); | 
 | out: | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static int nvme_submit_user_cmd(struct request_queue *q, | 
 | 		struct nvme_command *cmd, void __user *ubuffer, | 
 | 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len, | 
 | 		u32 meta_seed, u32 *result, unsigned timeout) | 
 | { | 
 | 	bool write = nvme_is_write(cmd); | 
 | 	struct nvme_ns *ns = q->queuedata; | 
 | 	struct gendisk *disk = ns ? ns->disk : NULL; | 
 | 	struct request *req; | 
 | 	struct bio *bio = NULL; | 
 | 	void *meta = NULL; | 
 | 	int ret; | 
 |  | 
 | 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); | 
 | 	if (IS_ERR(req)) | 
 | 		return PTR_ERR(req); | 
 |  | 
 | 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT; | 
 | 	nvme_req(req)->flags |= NVME_REQ_USERCMD; | 
 |  | 
 | 	if (ubuffer && bufflen) { | 
 | 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, | 
 | 				GFP_KERNEL); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		bio = req->bio; | 
 | 		bio->bi_disk = disk; | 
 | 		if (disk && meta_buffer && meta_len) { | 
 | 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, | 
 | 					meta_seed, write); | 
 | 			if (IS_ERR(meta)) { | 
 | 				ret = PTR_ERR(meta); | 
 | 				goto out_unmap; | 
 | 			} | 
 | 			req->cmd_flags |= REQ_INTEGRITY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	blk_execute_rq(req->q, disk, req, 0); | 
 | 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED) | 
 | 		ret = -EINTR; | 
 | 	else | 
 | 		ret = nvme_req(req)->status; | 
 | 	if (result) | 
 | 		*result = le32_to_cpu(nvme_req(req)->result.u32); | 
 | 	if (meta && !ret && !write) { | 
 | 		if (copy_to_user(meta_buffer, meta, meta_len)) | 
 | 			ret = -EFAULT; | 
 | 	} | 
 | 	kfree(meta); | 
 |  out_unmap: | 
 | 	if (bio) | 
 | 		blk_rq_unmap_user(bio); | 
 |  out: | 
 | 	blk_mq_free_request(req); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = rq->end_io_data; | 
 |  | 
 | 	blk_mq_free_request(rq); | 
 |  | 
 | 	if (status) { | 
 | 		dev_err(ctrl->device, | 
 | 			"failed nvme_keep_alive_end_io error=%d\n", | 
 | 				status); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); | 
 | } | 
 |  | 
 | static int nvme_keep_alive(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct request *rq; | 
 |  | 
 | 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, | 
 | 			NVME_QID_ANY); | 
 | 	if (IS_ERR(rq)) | 
 | 		return PTR_ERR(rq); | 
 |  | 
 | 	rq->timeout = ctrl->kato * HZ; | 
 | 	rq->end_io_data = ctrl; | 
 |  | 
 | 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_keep_alive_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), | 
 | 			struct nvme_ctrl, ka_work); | 
 |  | 
 | 	if (nvme_keep_alive(ctrl)) { | 
 | 		/* allocation failure, reset the controller */ | 
 | 		dev_err(ctrl->device, "keep-alive failed\n"); | 
 | 		nvme_reset_ctrl(ctrl); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	if (unlikely(ctrl->kato == 0)) | 
 | 		return; | 
 |  | 
 | 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); | 
 | } | 
 |  | 
 | void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	if (unlikely(ctrl->kato == 0)) | 
 | 		return; | 
 |  | 
 | 	cancel_delayed_work_sync(&ctrl->ka_work); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); | 
 |  | 
 | static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) | 
 | { | 
 | 	struct nvme_command c = { }; | 
 | 	int error; | 
 |  | 
 | 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */ | 
 | 	c.identify.opcode = nvme_admin_identify; | 
 | 	c.identify.cns = NVME_ID_CNS_CTRL; | 
 |  | 
 | 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); | 
 | 	if (!*id) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, | 
 | 			sizeof(struct nvme_id_ctrl)); | 
 | 	if (error) | 
 | 		kfree(*id); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, | 
 | 		struct nvme_ns_ids *ids) | 
 | { | 
 | 	struct nvme_command c = { }; | 
 | 	int status; | 
 | 	void *data; | 
 | 	int pos; | 
 | 	int len; | 
 |  | 
 | 	c.identify.opcode = nvme_admin_identify; | 
 | 	c.identify.nsid = cpu_to_le32(nsid); | 
 | 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; | 
 |  | 
 | 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, | 
 | 				      NVME_IDENTIFY_DATA_SIZE); | 
 | 	if (status) | 
 | 		goto free_data; | 
 |  | 
 | 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { | 
 | 		struct nvme_ns_id_desc *cur = data + pos; | 
 |  | 
 | 		if (cur->nidl == 0) | 
 | 			break; | 
 |  | 
 | 		switch (cur->nidt) { | 
 | 		case NVME_NIDT_EUI64: | 
 | 			if (cur->nidl != NVME_NIDT_EUI64_LEN) { | 
 | 				dev_warn(ctrl->device, | 
 | 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", | 
 | 					 cur->nidl); | 
 | 				goto free_data; | 
 | 			} | 
 | 			len = NVME_NIDT_EUI64_LEN; | 
 | 			memcpy(ids->eui64, data + pos + sizeof(*cur), len); | 
 | 			break; | 
 | 		case NVME_NIDT_NGUID: | 
 | 			if (cur->nidl != NVME_NIDT_NGUID_LEN) { | 
 | 				dev_warn(ctrl->device, | 
 | 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", | 
 | 					 cur->nidl); | 
 | 				goto free_data; | 
 | 			} | 
 | 			len = NVME_NIDT_NGUID_LEN; | 
 | 			memcpy(ids->nguid, data + pos + sizeof(*cur), len); | 
 | 			break; | 
 | 		case NVME_NIDT_UUID: | 
 | 			if (cur->nidl != NVME_NIDT_UUID_LEN) { | 
 | 				dev_warn(ctrl->device, | 
 | 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", | 
 | 					 cur->nidl); | 
 | 				goto free_data; | 
 | 			} | 
 | 			len = NVME_NIDT_UUID_LEN; | 
 | 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); | 
 | 			break; | 
 | 		default: | 
 | 			/* Skip unknown types */ | 
 | 			len = cur->nidl; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		len += sizeof(*cur); | 
 | 	} | 
 | free_data: | 
 | 	kfree(data); | 
 | 	return status; | 
 | } | 
 |  | 
 | static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) | 
 | { | 
 | 	struct nvme_command c = { }; | 
 |  | 
 | 	c.identify.opcode = nvme_admin_identify; | 
 | 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; | 
 | 	c.identify.nsid = cpu_to_le32(nsid); | 
 | 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, | 
 | 				    NVME_IDENTIFY_DATA_SIZE); | 
 | } | 
 |  | 
 | static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, | 
 | 		unsigned nsid) | 
 | { | 
 | 	struct nvme_id_ns *id; | 
 | 	struct nvme_command c = { }; | 
 | 	int error; | 
 |  | 
 | 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */ | 
 | 	c.identify.opcode = nvme_admin_identify; | 
 | 	c.identify.nsid = cpu_to_le32(nsid); | 
 | 	c.identify.cns = NVME_ID_CNS_NS; | 
 |  | 
 | 	id = kmalloc(sizeof(*id), GFP_KERNEL); | 
 | 	if (!id) | 
 | 		return NULL; | 
 |  | 
 | 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); | 
 | 	if (error) { | 
 | 		dev_warn(ctrl->device, "Identify namespace failed\n"); | 
 | 		kfree(id); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return id; | 
 | } | 
 |  | 
 | static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, | 
 | 		      void *buffer, size_t buflen, u32 *result) | 
 | { | 
 | 	struct nvme_command c; | 
 | 	union nvme_result res; | 
 | 	int ret; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.features.opcode = nvme_admin_set_features; | 
 | 	c.features.fid = cpu_to_le32(fid); | 
 | 	c.features.dword11 = cpu_to_le32(dword11); | 
 |  | 
 | 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, | 
 | 			buffer, buflen, 0, NVME_QID_ANY, 0, 0); | 
 | 	if (ret >= 0 && result) | 
 | 		*result = le32_to_cpu(res.u32); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) | 
 | { | 
 | 	u32 q_count = (*count - 1) | ((*count - 1) << 16); | 
 | 	u32 result; | 
 | 	int status, nr_io_queues; | 
 |  | 
 | 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, | 
 | 			&result); | 
 | 	if (status < 0) | 
 | 		return status; | 
 |  | 
 | 	/* | 
 | 	 * Degraded controllers might return an error when setting the queue | 
 | 	 * count.  We still want to be able to bring them online and offer | 
 | 	 * access to the admin queue, as that might be only way to fix them up. | 
 | 	 */ | 
 | 	if (status > 0) { | 
 | 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status); | 
 | 		*count = 0; | 
 | 	} else { | 
 | 		nr_io_queues = min(result & 0xffff, result >> 16) + 1; | 
 | 		*count = min(*count, nr_io_queues); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_set_queue_count); | 
 |  | 
 | #define NVME_AEN_SUPPORTED \ | 
 | 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE) | 
 |  | 
 | static void nvme_enable_aen(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; | 
 | 	int status; | 
 |  | 
 | 	if (!supported_aens) | 
 | 		return; | 
 |  | 
 | 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, | 
 | 			NULL, 0, &result); | 
 | 	if (status) | 
 | 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", | 
 | 			 supported_aens); | 
 | } | 
 |  | 
 | static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) | 
 | { | 
 | 	struct nvme_user_io io; | 
 | 	struct nvme_command c; | 
 | 	unsigned length, meta_len; | 
 | 	void __user *metadata; | 
 |  | 
 | 	if (copy_from_user(&io, uio, sizeof(io))) | 
 | 		return -EFAULT; | 
 | 	if (io.flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (io.opcode) { | 
 | 	case nvme_cmd_write: | 
 | 	case nvme_cmd_read: | 
 | 	case nvme_cmd_compare: | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	length = (io.nblocks + 1) << ns->lba_shift; | 
 | 	meta_len = (io.nblocks + 1) * ns->ms; | 
 | 	metadata = (void __user *)(uintptr_t)io.metadata; | 
 |  | 
 | 	if (ns->ext) { | 
 | 		length += meta_len; | 
 | 		meta_len = 0; | 
 | 	} else if (meta_len) { | 
 | 		if ((io.metadata & 3) || !io.metadata) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.rw.opcode = io.opcode; | 
 | 	c.rw.flags = io.flags; | 
 | 	c.rw.nsid = cpu_to_le32(ns->head->ns_id); | 
 | 	c.rw.slba = cpu_to_le64(io.slba); | 
 | 	c.rw.length = cpu_to_le16(io.nblocks); | 
 | 	c.rw.control = cpu_to_le16(io.control); | 
 | 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); | 
 | 	c.rw.reftag = cpu_to_le32(io.reftag); | 
 | 	c.rw.apptag = cpu_to_le16(io.apptag); | 
 | 	c.rw.appmask = cpu_to_le16(io.appmask); | 
 |  | 
 | 	return nvme_submit_user_cmd(ns->queue, &c, | 
 | 			(void __user *)(uintptr_t)io.addr, length, | 
 | 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0); | 
 | } | 
 |  | 
 | static u32 nvme_known_admin_effects(u8 opcode) | 
 | { | 
 | 	switch (opcode) { | 
 | 	case nvme_admin_format_nvm: | 
 | 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | | 
 | 					NVME_CMD_EFFECTS_CSE_MASK; | 
 | 	case nvme_admin_sanitize_nvm: | 
 | 		return NVME_CMD_EFFECTS_CSE_MASK; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, | 
 | 								u8 opcode) | 
 | { | 
 | 	u32 effects = 0; | 
 |  | 
 | 	if (ns) { | 
 | 		if (ctrl->effects) | 
 | 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]); | 
 | 		if (effects & ~NVME_CMD_EFFECTS_CSUPP) | 
 | 			dev_warn(ctrl->device, | 
 | 				 "IO command:%02x has unhandled effects:%08x\n", | 
 | 				 opcode, effects); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (ctrl->effects) | 
 | 		effects = le32_to_cpu(ctrl->effects->acs[opcode]); | 
 | 	else | 
 | 		effects = nvme_known_admin_effects(opcode); | 
 |  | 
 | 	/* | 
 | 	 * For simplicity, IO to all namespaces is quiesced even if the command | 
 | 	 * effects say only one namespace is affected. | 
 | 	 */ | 
 | 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { | 
 | 		nvme_start_freeze(ctrl); | 
 | 		nvme_wait_freeze(ctrl); | 
 | 	} | 
 | 	return effects; | 
 | } | 
 |  | 
 | static void nvme_update_formats(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) | 
 | 		if (ns->disk && nvme_revalidate_disk(ns->disk)) | 
 | 			nvme_set_queue_dying(ns); | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 |  | 
 | 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); | 
 | } | 
 |  | 
 | static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) | 
 | { | 
 | 	/* | 
 | 	 * Revalidate LBA changes prior to unfreezing. This is necessary to | 
 | 	 * prevent memory corruption if a logical block size was changed by | 
 | 	 * this command. | 
 | 	 */ | 
 | 	if (effects & NVME_CMD_EFFECTS_LBCC) | 
 | 		nvme_update_formats(ctrl); | 
 | 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) | 
 | 		nvme_unfreeze(ctrl); | 
 | 	if (effects & NVME_CMD_EFFECTS_CCC) | 
 | 		nvme_init_identify(ctrl); | 
 | 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) | 
 | 		nvme_queue_scan(ctrl); | 
 | } | 
 |  | 
 | static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, | 
 | 			struct nvme_passthru_cmd __user *ucmd) | 
 | { | 
 | 	struct nvme_passthru_cmd cmd; | 
 | 	struct nvme_command c; | 
 | 	unsigned timeout = 0; | 
 | 	u32 effects; | 
 | 	int status; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EACCES; | 
 | 	if (copy_from_user(&cmd, ucmd, sizeof(cmd))) | 
 | 		return -EFAULT; | 
 | 	if (cmd.flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.common.opcode = cmd.opcode; | 
 | 	c.common.flags = cmd.flags; | 
 | 	c.common.nsid = cpu_to_le32(cmd.nsid); | 
 | 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); | 
 | 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); | 
 | 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); | 
 | 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); | 
 | 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); | 
 | 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); | 
 | 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); | 
 | 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); | 
 |  | 
 | 	if (cmd.timeout_ms) | 
 | 		timeout = msecs_to_jiffies(cmd.timeout_ms); | 
 |  | 
 | 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode); | 
 | 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, | 
 | 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len, | 
 | 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, | 
 | 			0, &cmd.result, timeout); | 
 | 	nvme_passthru_end(ctrl, effects); | 
 |  | 
 | 	if (status >= 0) { | 
 | 		if (put_user(cmd.result, &ucmd->result)) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | /* | 
 |  * Issue ioctl requests on the first available path.  Note that unlike normal | 
 |  * block layer requests we will not retry failed request on another controller. | 
 |  */ | 
 | static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, | 
 | 		struct nvme_ns_head **head, int *srcu_idx) | 
 | { | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | 	if (disk->fops == &nvme_ns_head_ops) { | 
 | 		*head = disk->private_data; | 
 | 		*srcu_idx = srcu_read_lock(&(*head)->srcu); | 
 | 		return nvme_find_path(*head); | 
 | 	} | 
 | #endif | 
 | 	*head = NULL; | 
 | 	*srcu_idx = -1; | 
 | 	return disk->private_data; | 
 | } | 
 |  | 
 | static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) | 
 | { | 
 | 	if (head) | 
 | 		srcu_read_unlock(&head->srcu, idx); | 
 | } | 
 |  | 
 | static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) | 
 | { | 
 | 	switch (cmd) { | 
 | 	case NVME_IOCTL_ID: | 
 | 		force_successful_syscall_return(); | 
 | 		return ns->head->ns_id; | 
 | 	case NVME_IOCTL_ADMIN_CMD: | 
 | 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); | 
 | 	case NVME_IOCTL_IO_CMD: | 
 | 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); | 
 | 	case NVME_IOCTL_SUBMIT_IO: | 
 | 		return nvme_submit_io(ns, (void __user *)arg); | 
 | 	default: | 
 | #ifdef CONFIG_NVM | 
 | 		if (ns->ndev) | 
 | 			return nvme_nvm_ioctl(ns, cmd, arg); | 
 | #endif | 
 | 		if (is_sed_ioctl(cmd)) | 
 | 			return sed_ioctl(ns->ctrl->opal_dev, cmd, | 
 | 					 (void __user *) arg); | 
 | 		return -ENOTTY; | 
 | 	} | 
 | } | 
 |  | 
 | static int nvme_ioctl(struct block_device *bdev, fmode_t mode, | 
 | 		unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	struct nvme_ns_head *head = NULL; | 
 | 	struct nvme_ns *ns; | 
 | 	int srcu_idx, ret; | 
 |  | 
 | 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); | 
 | 	if (unlikely(!ns)) | 
 | 		ret = -EWOULDBLOCK; | 
 | 	else | 
 | 		ret = nvme_ns_ioctl(ns, cmd, arg); | 
 | 	nvme_put_ns_from_disk(head, srcu_idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_open(struct block_device *bdev, fmode_t mode) | 
 | { | 
 | 	struct nvme_ns *ns = bdev->bd_disk->private_data; | 
 |  | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | 	/* should never be called due to GENHD_FL_HIDDEN */ | 
 | 	if (WARN_ON_ONCE(ns->head->disk)) | 
 | 		goto fail; | 
 | #endif | 
 | 	if (!kref_get_unless_zero(&ns->kref)) | 
 | 		goto fail; | 
 | 	if (!try_module_get(ns->ctrl->ops->module)) | 
 | 		goto fail_put_ns; | 
 |  | 
 | 	return 0; | 
 |  | 
 | fail_put_ns: | 
 | 	nvme_put_ns(ns); | 
 | fail: | 
 | 	return -ENXIO; | 
 | } | 
 |  | 
 | static void nvme_release(struct gendisk *disk, fmode_t mode) | 
 | { | 
 | 	struct nvme_ns *ns = disk->private_data; | 
 |  | 
 | 	module_put(ns->ctrl->ops->module); | 
 | 	nvme_put_ns(ns); | 
 | } | 
 |  | 
 | static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) | 
 | { | 
 | 	/* some standard values */ | 
 | 	geo->heads = 1 << 6; | 
 | 	geo->sectors = 1 << 5; | 
 | 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INTEGRITY | 
 | static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) | 
 | { | 
 | 	struct blk_integrity integrity; | 
 |  | 
 | 	memset(&integrity, 0, sizeof(integrity)); | 
 | 	switch (pi_type) { | 
 | 	case NVME_NS_DPS_PI_TYPE3: | 
 | 		integrity.profile = &t10_pi_type3_crc; | 
 | 		integrity.tag_size = sizeof(u16) + sizeof(u32); | 
 | 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; | 
 | 		break; | 
 | 	case NVME_NS_DPS_PI_TYPE1: | 
 | 	case NVME_NS_DPS_PI_TYPE2: | 
 | 		integrity.profile = &t10_pi_type1_crc; | 
 | 		integrity.tag_size = sizeof(u16); | 
 | 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; | 
 | 		break; | 
 | 	default: | 
 | 		integrity.profile = NULL; | 
 | 		break; | 
 | 	} | 
 | 	integrity.tuple_size = ms; | 
 | 	blk_integrity_register(disk, &integrity); | 
 | 	blk_queue_max_integrity_segments(disk->queue, 1); | 
 | } | 
 | #else | 
 | static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) | 
 | { | 
 | } | 
 | #endif /* CONFIG_BLK_DEV_INTEGRITY */ | 
 |  | 
 | static void nvme_set_chunk_size(struct nvme_ns *ns) | 
 | { | 
 | 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); | 
 | 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); | 
 | } | 
 |  | 
 | static void nvme_config_discard(struct nvme_ns *ns) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = ns->ctrl; | 
 | 	struct request_queue *queue = ns->queue; | 
 | 	u32 size = queue_logical_block_size(queue); | 
 |  | 
 | 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { | 
 | 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (ctrl->nr_streams && ns->sws && ns->sgs) | 
 | 		size *= ns->sws * ns->sgs; | 
 |  | 
 | 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < | 
 | 			NVME_DSM_MAX_RANGES); | 
 |  | 
 | 	queue->limits.discard_alignment = 0; | 
 | 	queue->limits.discard_granularity = size; | 
 |  | 
 | 	/* If discard is already enabled, don't reset queue limits */ | 
 | 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) | 
 | 		return; | 
 |  | 
 | 	blk_queue_max_discard_sectors(queue, UINT_MAX); | 
 | 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); | 
 |  | 
 | 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) | 
 | 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); | 
 | } | 
 |  | 
 | static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, | 
 | 		struct nvme_id_ns *id, struct nvme_ns_ids *ids) | 
 | { | 
 | 	memset(ids, 0, sizeof(*ids)); | 
 |  | 
 | 	if (ctrl->vs >= NVME_VS(1, 1, 0)) | 
 | 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); | 
 | 	if (ctrl->vs >= NVME_VS(1, 2, 0)) | 
 | 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); | 
 | 	if (ctrl->vs >= NVME_VS(1, 3, 0)) { | 
 | 		 /* Don't treat error as fatal we potentially | 
 | 		  * already have a NGUID or EUI-64 | 
 | 		  */ | 
 | 		if (nvme_identify_ns_descs(ctrl, nsid, ids)) | 
 | 			dev_warn(ctrl->device, | 
 | 				 "%s: Identify Descriptors failed\n", __func__); | 
 | 	} | 
 | } | 
 |  | 
 | static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) | 
 | { | 
 | 	return !uuid_is_null(&ids->uuid) || | 
 | 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || | 
 | 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); | 
 | } | 
 |  | 
 | static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) | 
 | { | 
 | 	return uuid_equal(&a->uuid, &b->uuid) && | 
 | 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && | 
 | 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; | 
 | } | 
 |  | 
 | static void nvme_update_disk_info(struct gendisk *disk, | 
 | 		struct nvme_ns *ns, struct nvme_id_ns *id) | 
 | { | 
 | 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); | 
 | 	unsigned short bs = 1 << ns->lba_shift; | 
 |  | 
 | 	blk_mq_freeze_queue(disk->queue); | 
 | 	blk_integrity_unregister(disk); | 
 |  | 
 | 	blk_queue_logical_block_size(disk->queue, bs); | 
 | 	blk_queue_physical_block_size(disk->queue, bs); | 
 | 	blk_queue_io_min(disk->queue, bs); | 
 |  | 
 | 	if (ns->ms && !ns->ext && | 
 | 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) | 
 | 		nvme_init_integrity(disk, ns->ms, ns->pi_type); | 
 | 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) | 
 | 		capacity = 0; | 
 |  | 
 | 	set_capacity(disk, capacity); | 
 | 	nvme_config_discard(ns); | 
 |  | 
 | 	if (id->nsattr & (1 << 0)) | 
 | 		set_disk_ro(disk, true); | 
 | 	else | 
 | 		set_disk_ro(disk, false); | 
 |  | 
 | 	blk_mq_unfreeze_queue(disk->queue); | 
 | } | 
 |  | 
 | static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) | 
 | { | 
 | 	struct nvme_ns *ns = disk->private_data; | 
 |  | 
 | 	/* | 
 | 	 * If identify namespace failed, use default 512 byte block size so | 
 | 	 * block layer can use before failing read/write for 0 capacity. | 
 | 	 */ | 
 | 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; | 
 | 	if (ns->lba_shift == 0) | 
 | 		ns->lba_shift = 9; | 
 | 	ns->noiob = le16_to_cpu(id->noiob); | 
 | 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); | 
 | 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); | 
 | 	/* the PI implementation requires metadata equal t10 pi tuple size */ | 
 | 	if (ns->ms == sizeof(struct t10_pi_tuple)) | 
 | 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; | 
 | 	else | 
 | 		ns->pi_type = 0; | 
 |  | 
 | 	if (ns->noiob) | 
 | 		nvme_set_chunk_size(ns); | 
 | 	nvme_update_disk_info(disk, ns, id); | 
 | 	if (ns->ndev) | 
 | 		nvme_nvm_update_nvm_info(ns); | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | 	if (ns->head->disk) { | 
 | 		nvme_update_disk_info(ns->head->disk, ns, id); | 
 | 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static int nvme_revalidate_disk(struct gendisk *disk) | 
 | { | 
 | 	struct nvme_ns *ns = disk->private_data; | 
 | 	struct nvme_ctrl *ctrl = ns->ctrl; | 
 | 	struct nvme_id_ns *id; | 
 | 	struct nvme_ns_ids ids; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (test_bit(NVME_NS_DEAD, &ns->flags)) { | 
 | 		set_capacity(disk, 0); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	id = nvme_identify_ns(ctrl, ns->head->ns_id); | 
 | 	if (!id) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (id->ncap == 0) { | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	__nvme_revalidate_disk(disk, id); | 
 | 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); | 
 | 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { | 
 | 		dev_err(ctrl->device, | 
 | 			"identifiers changed for nsid %d\n", ns->head->ns_id); | 
 | 		ret = -ENODEV; | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(id); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static char nvme_pr_type(enum pr_type type) | 
 | { | 
 | 	switch (type) { | 
 | 	case PR_WRITE_EXCLUSIVE: | 
 | 		return 1; | 
 | 	case PR_EXCLUSIVE_ACCESS: | 
 | 		return 2; | 
 | 	case PR_WRITE_EXCLUSIVE_REG_ONLY: | 
 | 		return 3; | 
 | 	case PR_EXCLUSIVE_ACCESS_REG_ONLY: | 
 | 		return 4; | 
 | 	case PR_WRITE_EXCLUSIVE_ALL_REGS: | 
 | 		return 5; | 
 | 	case PR_EXCLUSIVE_ACCESS_ALL_REGS: | 
 | 		return 6; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | }; | 
 |  | 
 | static int nvme_pr_command(struct block_device *bdev, u32 cdw10, | 
 | 				u64 key, u64 sa_key, u8 op) | 
 | { | 
 | 	struct nvme_ns_head *head = NULL; | 
 | 	struct nvme_ns *ns; | 
 | 	struct nvme_command c; | 
 | 	int srcu_idx, ret; | 
 | 	u8 data[16] = { 0, }; | 
 |  | 
 | 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); | 
 | 	if (unlikely(!ns)) | 
 | 		return -EWOULDBLOCK; | 
 |  | 
 | 	put_unaligned_le64(key, &data[0]); | 
 | 	put_unaligned_le64(sa_key, &data[8]); | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.common.opcode = op; | 
 | 	c.common.nsid = cpu_to_le32(ns->head->ns_id); | 
 | 	c.common.cdw10[0] = cpu_to_le32(cdw10); | 
 |  | 
 | 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); | 
 | 	nvme_put_ns_from_disk(head, srcu_idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_pr_register(struct block_device *bdev, u64 old, | 
 | 		u64 new, unsigned flags) | 
 | { | 
 | 	u32 cdw10; | 
 |  | 
 | 	if (flags & ~PR_FL_IGNORE_KEY) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	cdw10 = old ? 2 : 0; | 
 | 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; | 
 | 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ | 
 | 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); | 
 | } | 
 |  | 
 | static int nvme_pr_reserve(struct block_device *bdev, u64 key, | 
 | 		enum pr_type type, unsigned flags) | 
 | { | 
 | 	u32 cdw10; | 
 |  | 
 | 	if (flags & ~PR_FL_IGNORE_KEY) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	cdw10 = nvme_pr_type(type) << 8; | 
 | 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); | 
 | 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); | 
 | } | 
 |  | 
 | static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, | 
 | 		enum pr_type type, bool abort) | 
 | { | 
 | 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); | 
 | 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); | 
 | } | 
 |  | 
 | static int nvme_pr_clear(struct block_device *bdev, u64 key) | 
 | { | 
 | 	u32 cdw10 = 1 | (key ? 1 << 3 : 0); | 
 | 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); | 
 | } | 
 |  | 
 | static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) | 
 | { | 
 | 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); | 
 | 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); | 
 | } | 
 |  | 
 | static const struct pr_ops nvme_pr_ops = { | 
 | 	.pr_register	= nvme_pr_register, | 
 | 	.pr_reserve	= nvme_pr_reserve, | 
 | 	.pr_release	= nvme_pr_release, | 
 | 	.pr_preempt	= nvme_pr_preempt, | 
 | 	.pr_clear	= nvme_pr_clear, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_BLK_SED_OPAL | 
 | int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, | 
 | 		bool send) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = data; | 
 | 	struct nvme_command cmd; | 
 |  | 
 | 	memset(&cmd, 0, sizeof(cmd)); | 
 | 	if (send) | 
 | 		cmd.common.opcode = nvme_admin_security_send; | 
 | 	else | 
 | 		cmd.common.opcode = nvme_admin_security_recv; | 
 | 	cmd.common.nsid = 0; | 
 | 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); | 
 | 	cmd.common.cdw10[1] = cpu_to_le32(len); | 
 |  | 
 | 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, | 
 | 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_sec_submit); | 
 | #endif /* CONFIG_BLK_SED_OPAL */ | 
 |  | 
 | static const struct block_device_operations nvme_fops = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.ioctl		= nvme_ioctl, | 
 | 	.compat_ioctl	= nvme_ioctl, | 
 | 	.open		= nvme_open, | 
 | 	.release	= nvme_release, | 
 | 	.getgeo		= nvme_getgeo, | 
 | 	.revalidate_disk= nvme_revalidate_disk, | 
 | 	.pr_ops		= &nvme_pr_ops, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) | 
 | { | 
 | 	struct nvme_ns_head *head = bdev->bd_disk->private_data; | 
 |  | 
 | 	if (!kref_get_unless_zero(&head->ref)) | 
 | 		return -ENXIO; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) | 
 | { | 
 | 	nvme_put_ns_head(disk->private_data); | 
 | } | 
 |  | 
 | const struct block_device_operations nvme_ns_head_ops = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.open		= nvme_ns_head_open, | 
 | 	.release	= nvme_ns_head_release, | 
 | 	.ioctl		= nvme_ioctl, | 
 | 	.compat_ioctl	= nvme_ioctl, | 
 | 	.getgeo		= nvme_getgeo, | 
 | 	.pr_ops		= &nvme_pr_ops, | 
 | }; | 
 | #endif /* CONFIG_NVME_MULTIPATH */ | 
 |  | 
 | static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) | 
 | { | 
 | 	unsigned long timeout = | 
 | 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; | 
 | 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; | 
 | 	int ret; | 
 |  | 
 | 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { | 
 | 		if (csts == ~0) | 
 | 			return -ENODEV; | 
 | 		if ((csts & NVME_CSTS_RDY) == bit) | 
 | 			break; | 
 |  | 
 | 		msleep(100); | 
 | 		if (fatal_signal_pending(current)) | 
 | 			return -EINTR; | 
 | 		if (time_after(jiffies, timeout)) { | 
 | 			dev_err(ctrl->device, | 
 | 				"Device not ready; aborting %s\n", enabled ? | 
 | 						"initialisation" : "reset"); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If the device has been passed off to us in an enabled state, just clear | 
 |  * the enabled bit.  The spec says we should set the 'shutdown notification | 
 |  * bits', but doing so may cause the device to complete commands to the | 
 |  * admin queue ... and we don't know what memory that might be pointing at! | 
 |  */ | 
 | int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; | 
 | 	ctrl->ctrl_config &= ~NVME_CC_ENABLE; | 
 |  | 
 | 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) | 
 | 		msleep(NVME_QUIRK_DELAY_AMOUNT); | 
 |  | 
 | 	return nvme_wait_ready(ctrl, cap, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_disable_ctrl); | 
 |  | 
 | int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) | 
 | { | 
 | 	/* | 
 | 	 * Default to a 4K page size, with the intention to update this | 
 | 	 * path in the future to accomodate architectures with differing | 
 | 	 * kernel and IO page sizes. | 
 | 	 */ | 
 | 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; | 
 | 	int ret; | 
 |  | 
 | 	if (page_shift < dev_page_min) { | 
 | 		dev_err(ctrl->device, | 
 | 			"Minimum device page size %u too large for host (%u)\n", | 
 | 			1 << dev_page_min, 1 << page_shift); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ctrl->page_size = 1 << page_shift; | 
 |  | 
 | 	ctrl->ctrl_config = NVME_CC_CSS_NVM; | 
 | 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; | 
 | 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; | 
 | 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; | 
 | 	ctrl->ctrl_config |= NVME_CC_ENABLE; | 
 |  | 
 | 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	return nvme_wait_ready(ctrl, cap, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_enable_ctrl); | 
 |  | 
 | int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); | 
 | 	u32 csts; | 
 | 	int ret; | 
 |  | 
 | 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; | 
 | 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; | 
 |  | 
 | 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { | 
 | 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) | 
 | 			break; | 
 |  | 
 | 		msleep(100); | 
 | 		if (fatal_signal_pending(current)) | 
 | 			return -EINTR; | 
 | 		if (time_after(jiffies, timeout)) { | 
 | 			dev_err(ctrl->device, | 
 | 				"Device shutdown incomplete; abort shutdown\n"); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); | 
 |  | 
 | static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, | 
 | 		struct request_queue *q) | 
 | { | 
 | 	bool vwc = false; | 
 |  | 
 | 	if (ctrl->max_hw_sectors) { | 
 | 		u32 max_segments = | 
 | 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; | 
 |  | 
 | 		max_segments = min_not_zero(max_segments, ctrl->max_segments); | 
 | 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); | 
 | 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); | 
 | 	} | 
 | 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && | 
 | 	    is_power_of_2(ctrl->max_hw_sectors)) | 
 | 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); | 
 | 	blk_queue_virt_boundary(q, ctrl->page_size - 1); | 
 | 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) | 
 | 		vwc = true; | 
 | 	blk_queue_write_cache(q, vwc, vwc); | 
 | } | 
 |  | 
 | static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	__le64 ts; | 
 | 	int ret; | 
 |  | 
 | 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) | 
 | 		return 0; | 
 |  | 
 | 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); | 
 | 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), | 
 | 			NULL); | 
 | 	if (ret) | 
 | 		dev_warn_once(ctrl->device, | 
 | 			"could not set timestamp (%d)\n", ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_configure_apst(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	/* | 
 | 	 * APST (Autonomous Power State Transition) lets us program a | 
 | 	 * table of power state transitions that the controller will | 
 | 	 * perform automatically.  We configure it with a simple | 
 | 	 * heuristic: we are willing to spend at most 2% of the time | 
 | 	 * transitioning between power states.  Therefore, when running | 
 | 	 * in any given state, we will enter the next lower-power | 
 | 	 * non-operational state after waiting 50 * (enlat + exlat) | 
 | 	 * microseconds, as long as that state's exit latency is under | 
 | 	 * the requested maximum latency. | 
 | 	 * | 
 | 	 * We will not autonomously enter any non-operational state for | 
 | 	 * which the total latency exceeds ps_max_latency_us.  Users | 
 | 	 * can set ps_max_latency_us to zero to turn off APST. | 
 | 	 */ | 
 |  | 
 | 	unsigned apste; | 
 | 	struct nvme_feat_auto_pst *table; | 
 | 	u64 max_lat_us = 0; | 
 | 	int max_ps = -1; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If APST isn't supported or if we haven't been initialized yet, | 
 | 	 * then don't do anything. | 
 | 	 */ | 
 | 	if (!ctrl->apsta) | 
 | 		return 0; | 
 |  | 
 | 	if (ctrl->npss > 31) { | 
 | 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	table = kzalloc(sizeof(*table), GFP_KERNEL); | 
 | 	if (!table) | 
 | 		return 0; | 
 |  | 
 | 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { | 
 | 		/* Turn off APST. */ | 
 | 		apste = 0; | 
 | 		dev_dbg(ctrl->device, "APST disabled\n"); | 
 | 	} else { | 
 | 		__le64 target = cpu_to_le64(0); | 
 | 		int state; | 
 |  | 
 | 		/* | 
 | 		 * Walk through all states from lowest- to highest-power. | 
 | 		 * According to the spec, lower-numbered states use more | 
 | 		 * power.  NPSS, despite the name, is the index of the | 
 | 		 * lowest-power state, not the number of states. | 
 | 		 */ | 
 | 		for (state = (int)ctrl->npss; state >= 0; state--) { | 
 | 			u64 total_latency_us, exit_latency_us, transition_ms; | 
 |  | 
 | 			if (target) | 
 | 				table->entries[state] = target; | 
 |  | 
 | 			/* | 
 | 			 * Don't allow transitions to the deepest state | 
 | 			 * if it's quirked off. | 
 | 			 */ | 
 | 			if (state == ctrl->npss && | 
 | 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) | 
 | 				continue; | 
 |  | 
 | 			/* | 
 | 			 * Is this state a useful non-operational state for | 
 | 			 * higher-power states to autonomously transition to? | 
 | 			 */ | 
 | 			if (!(ctrl->psd[state].flags & | 
 | 			      NVME_PS_FLAGS_NON_OP_STATE)) | 
 | 				continue; | 
 |  | 
 | 			exit_latency_us = | 
 | 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat); | 
 | 			if (exit_latency_us > ctrl->ps_max_latency_us) | 
 | 				continue; | 
 |  | 
 | 			total_latency_us = | 
 | 				exit_latency_us + | 
 | 				le32_to_cpu(ctrl->psd[state].entry_lat); | 
 |  | 
 | 			/* | 
 | 			 * This state is good.  Use it as the APST idle | 
 | 			 * target for higher power states. | 
 | 			 */ | 
 | 			transition_ms = total_latency_us + 19; | 
 | 			do_div(transition_ms, 20); | 
 | 			if (transition_ms > (1 << 24) - 1) | 
 | 				transition_ms = (1 << 24) - 1; | 
 |  | 
 | 			target = cpu_to_le64((state << 3) | | 
 | 					     (transition_ms << 8)); | 
 |  | 
 | 			if (max_ps == -1) | 
 | 				max_ps = state; | 
 |  | 
 | 			if (total_latency_us > max_lat_us) | 
 | 				max_lat_us = total_latency_us; | 
 | 		} | 
 |  | 
 | 		apste = 1; | 
 |  | 
 | 		if (max_ps == -1) { | 
 | 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); | 
 | 		} else { | 
 | 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", | 
 | 				max_ps, max_lat_us, (int)sizeof(*table), table); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, | 
 | 				table, sizeof(*table), NULL); | 
 | 	if (ret) | 
 | 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); | 
 |  | 
 | 	kfree(table); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_set_latency_tolerance(struct device *dev, s32 val) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 | 	u64 latency; | 
 |  | 
 | 	switch (val) { | 
 | 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: | 
 | 	case PM_QOS_LATENCY_ANY: | 
 | 		latency = U64_MAX; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		latency = val; | 
 | 	} | 
 |  | 
 | 	if (ctrl->ps_max_latency_us != latency) { | 
 | 		ctrl->ps_max_latency_us = latency; | 
 | 		nvme_configure_apst(ctrl); | 
 | 	} | 
 | } | 
 |  | 
 | struct nvme_core_quirk_entry { | 
 | 	/* | 
 | 	 * NVMe model and firmware strings are padded with spaces.  For | 
 | 	 * simplicity, strings in the quirk table are padded with NULLs | 
 | 	 * instead. | 
 | 	 */ | 
 | 	u16 vid; | 
 | 	const char *mn; | 
 | 	const char *fr; | 
 | 	unsigned long quirks; | 
 | }; | 
 |  | 
 | static const struct nvme_core_quirk_entry core_quirks[] = { | 
 | 	{ | 
 | 		/* | 
 | 		 * This Toshiba device seems to die using any APST states.  See: | 
 | 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 | 
 | 		 */ | 
 | 		.vid = 0x1179, | 
 | 		.mn = "THNSF5256GPUK TOSHIBA", | 
 | 		.quirks = NVME_QUIRK_NO_APST, | 
 | 	} | 
 | }; | 
 |  | 
 | /* match is null-terminated but idstr is space-padded. */ | 
 | static bool string_matches(const char *idstr, const char *match, size_t len) | 
 | { | 
 | 	size_t matchlen; | 
 |  | 
 | 	if (!match) | 
 | 		return true; | 
 |  | 
 | 	matchlen = strlen(match); | 
 | 	WARN_ON_ONCE(matchlen > len); | 
 |  | 
 | 	if (memcmp(idstr, match, matchlen)) | 
 | 		return false; | 
 |  | 
 | 	for (; matchlen < len; matchlen++) | 
 | 		if (idstr[matchlen] != ' ') | 
 | 			return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool quirk_matches(const struct nvme_id_ctrl *id, | 
 | 			  const struct nvme_core_quirk_entry *q) | 
 | { | 
 | 	return q->vid == le16_to_cpu(id->vid) && | 
 | 		string_matches(id->mn, q->mn, sizeof(id->mn)) && | 
 | 		string_matches(id->fr, q->fr, sizeof(id->fr)); | 
 | } | 
 |  | 
 | static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, | 
 | 		struct nvme_id_ctrl *id) | 
 | { | 
 | 	size_t nqnlen; | 
 | 	int off; | 
 |  | 
 | 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); | 
 | 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { | 
 | 		strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (ctrl->vs >= NVME_VS(1, 2, 1)) | 
 | 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); | 
 |  | 
 | 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ | 
 | 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, | 
 | 			"nqn.2014.08.org.nvmexpress:%4x%4x", | 
 | 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); | 
 | 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); | 
 | 	off += sizeof(id->sn); | 
 | 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); | 
 | 	off += sizeof(id->mn); | 
 | 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); | 
 | } | 
 |  | 
 | static void __nvme_release_subsystem(struct nvme_subsystem *subsys) | 
 | { | 
 | 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance); | 
 | 	kfree(subsys); | 
 | } | 
 |  | 
 | static void nvme_release_subsystem(struct device *dev) | 
 | { | 
 | 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); | 
 | } | 
 |  | 
 | static void nvme_destroy_subsystem(struct kref *ref) | 
 | { | 
 | 	struct nvme_subsystem *subsys = | 
 | 			container_of(ref, struct nvme_subsystem, ref); | 
 |  | 
 | 	mutex_lock(&nvme_subsystems_lock); | 
 | 	list_del(&subsys->entry); | 
 | 	mutex_unlock(&nvme_subsystems_lock); | 
 |  | 
 | 	ida_destroy(&subsys->ns_ida); | 
 | 	device_del(&subsys->dev); | 
 | 	put_device(&subsys->dev); | 
 | } | 
 |  | 
 | static void nvme_put_subsystem(struct nvme_subsystem *subsys) | 
 | { | 
 | 	kref_put(&subsys->ref, nvme_destroy_subsystem); | 
 | } | 
 |  | 
 | static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) | 
 | { | 
 | 	struct nvme_subsystem *subsys; | 
 |  | 
 | 	lockdep_assert_held(&nvme_subsystems_lock); | 
 |  | 
 | 	list_for_each_entry(subsys, &nvme_subsystems, entry) { | 
 | 		if (strcmp(subsys->subnqn, subsysnqn)) | 
 | 			continue; | 
 | 		if (!kref_get_unless_zero(&subsys->ref)) | 
 | 			continue; | 
 | 		return subsys; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #define SUBSYS_ATTR_RO(_name, _mode, _show)			\ | 
 | 	struct device_attribute subsys_attr_##_name = \ | 
 | 		__ATTR(_name, _mode, _show, NULL) | 
 |  | 
 | static ssize_t nvme_subsys_show_nqn(struct device *dev, | 
 | 				    struct device_attribute *attr, | 
 | 				    char *buf) | 
 | { | 
 | 	struct nvme_subsystem *subsys = | 
 | 		container_of(dev, struct nvme_subsystem, dev); | 
 |  | 
 | 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); | 
 | } | 
 | static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); | 
 |  | 
 | #define nvme_subsys_show_str_function(field)				\ | 
 | static ssize_t subsys_##field##_show(struct device *dev,		\ | 
 | 			    struct device_attribute *attr, char *buf)	\ | 
 | {									\ | 
 | 	struct nvme_subsystem *subsys =					\ | 
 | 		container_of(dev, struct nvme_subsystem, dev);		\ | 
 | 	return sprintf(buf, "%.*s\n",					\ | 
 | 		       (int)sizeof(subsys->field), subsys->field);	\ | 
 | }									\ | 
 | static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); | 
 |  | 
 | nvme_subsys_show_str_function(model); | 
 | nvme_subsys_show_str_function(serial); | 
 | nvme_subsys_show_str_function(firmware_rev); | 
 |  | 
 | static struct attribute *nvme_subsys_attrs[] = { | 
 | 	&subsys_attr_model.attr, | 
 | 	&subsys_attr_serial.attr, | 
 | 	&subsys_attr_firmware_rev.attr, | 
 | 	&subsys_attr_subsysnqn.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct attribute_group nvme_subsys_attrs_group = { | 
 | 	.attrs = nvme_subsys_attrs, | 
 | }; | 
 |  | 
 | static const struct attribute_group *nvme_subsys_attrs_groups[] = { | 
 | 	&nvme_subsys_attrs_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static int nvme_active_ctrls(struct nvme_subsystem *subsys) | 
 | { | 
 | 	int count = 0; | 
 | 	struct nvme_ctrl *ctrl; | 
 |  | 
 | 	mutex_lock(&subsys->lock); | 
 | 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { | 
 | 		if (ctrl->state != NVME_CTRL_DELETING && | 
 | 		    ctrl->state != NVME_CTRL_DEAD) | 
 | 			count++; | 
 | 	} | 
 | 	mutex_unlock(&subsys->lock); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) | 
 | { | 
 | 	struct nvme_subsystem *subsys, *found; | 
 | 	int ret; | 
 |  | 
 | 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); | 
 | 	if (!subsys) | 
 | 		return -ENOMEM; | 
 | 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); | 
 | 	if (ret < 0) { | 
 | 		kfree(subsys); | 
 | 		return ret; | 
 | 	} | 
 | 	subsys->instance = ret; | 
 | 	mutex_init(&subsys->lock); | 
 | 	kref_init(&subsys->ref); | 
 | 	INIT_LIST_HEAD(&subsys->ctrls); | 
 | 	INIT_LIST_HEAD(&subsys->nsheads); | 
 | 	nvme_init_subnqn(subsys, ctrl, id); | 
 | 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); | 
 | 	memcpy(subsys->model, id->mn, sizeof(subsys->model)); | 
 | 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); | 
 | 	subsys->vendor_id = le16_to_cpu(id->vid); | 
 | 	subsys->cmic = id->cmic; | 
 |  | 
 | 	subsys->dev.class = nvme_subsys_class; | 
 | 	subsys->dev.release = nvme_release_subsystem; | 
 | 	subsys->dev.groups = nvme_subsys_attrs_groups; | 
 | 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); | 
 | 	device_initialize(&subsys->dev); | 
 |  | 
 | 	mutex_lock(&nvme_subsystems_lock); | 
 | 	found = __nvme_find_get_subsystem(subsys->subnqn); | 
 | 	if (found) { | 
 | 		/* | 
 | 		 * Verify that the subsystem actually supports multiple | 
 | 		 * controllers, else bail out. | 
 | 		 */ | 
 | 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) && | 
 | 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { | 
 | 			dev_err(ctrl->device, | 
 | 				"ignoring ctrl due to duplicate subnqn (%s).\n", | 
 | 				found->subnqn); | 
 | 			nvme_put_subsystem(found); | 
 | 			ret = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		__nvme_release_subsystem(subsys); | 
 | 		subsys = found; | 
 | 	} else { | 
 | 		ret = device_add(&subsys->dev); | 
 | 		if (ret) { | 
 | 			dev_err(ctrl->device, | 
 | 				"failed to register subsystem device.\n"); | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		ida_init(&subsys->ns_ida); | 
 | 		list_add_tail(&subsys->entry, &nvme_subsystems); | 
 | 	} | 
 |  | 
 | 	ctrl->subsys = subsys; | 
 | 	mutex_unlock(&nvme_subsystems_lock); | 
 |  | 
 | 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, | 
 | 			dev_name(ctrl->device))) { | 
 | 		dev_err(ctrl->device, | 
 | 			"failed to create sysfs link from subsystem.\n"); | 
 | 		/* the transport driver will eventually put the subsystem */ | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&subsys->lock); | 
 | 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); | 
 | 	mutex_unlock(&subsys->lock); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&nvme_subsystems_lock); | 
 | 	put_device(&subsys->dev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, | 
 | 		void *log, size_t size, u64 offset) | 
 | { | 
 | 	struct nvme_command c = { }; | 
 | 	unsigned long dwlen = size / 4 - 1; | 
 |  | 
 | 	c.get_log_page.opcode = nvme_admin_get_log_page; | 
 | 	c.get_log_page.nsid = cpu_to_le32(nsid); | 
 | 	c.get_log_page.lid = log_page; | 
 | 	c.get_log_page.lsp = lsp; | 
 | 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); | 
 | 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); | 
 | 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); | 
 | 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); | 
 |  | 
 | 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); | 
 | } | 
 |  | 
 | static int nvme_get_effects_log(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!ctrl->effects) | 
 | 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); | 
 |  | 
 | 	if (!ctrl->effects) | 
 | 		return 0; | 
 |  | 
 | 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, | 
 | 			ctrl->effects, sizeof(*ctrl->effects), 0); | 
 | 	if (ret) { | 
 | 		kfree(ctrl->effects); | 
 | 		ctrl->effects = NULL; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the cached copies of the Identify data and various controller | 
 |  * register in our nvme_ctrl structure.  This should be called as soon as | 
 |  * the admin queue is fully up and running. | 
 |  */ | 
 | int nvme_init_identify(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_id_ctrl *id; | 
 | 	u64 cap; | 
 | 	int ret, page_shift; | 
 | 	u32 max_hw_sectors; | 
 | 	bool prev_apst_enabled; | 
 |  | 
 | 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); | 
 | 	if (ret) { | 
 | 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); | 
 | 	if (ret) { | 
 | 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); | 
 | 		return ret; | 
 | 	} | 
 | 	page_shift = NVME_CAP_MPSMIN(cap) + 12; | 
 |  | 
 | 	if (ctrl->vs >= NVME_VS(1, 1, 0)) | 
 | 		ctrl->subsystem = NVME_CAP_NSSRC(cap); | 
 |  | 
 | 	ret = nvme_identify_ctrl(ctrl, &id); | 
 | 	if (ret) { | 
 | 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { | 
 | 		ret = nvme_get_effects_log(ctrl); | 
 | 		if (ret < 0) | 
 | 			goto out_free; | 
 | 	} | 
 |  | 
 | 	if (!ctrl->identified) { | 
 | 		int i; | 
 |  | 
 | 		ret = nvme_init_subsystem(ctrl, id); | 
 | 		if (ret) | 
 | 			goto out_free; | 
 |  | 
 | 		/* | 
 | 		 * Check for quirks.  Quirk can depend on firmware version, | 
 | 		 * so, in principle, the set of quirks present can change | 
 | 		 * across a reset.  As a possible future enhancement, we | 
 | 		 * could re-scan for quirks every time we reinitialize | 
 | 		 * the device, but we'd have to make sure that the driver | 
 | 		 * behaves intelligently if the quirks change. | 
 | 		 */ | 
 | 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { | 
 | 			if (quirk_matches(id, &core_quirks[i])) | 
 | 				ctrl->quirks |= core_quirks[i].quirks; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { | 
 | 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); | 
 | 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; | 
 | 	} | 
 |  | 
 | 	ctrl->oacs = le16_to_cpu(id->oacs); | 
 | 	ctrl->oncs = le16_to_cpup(&id->oncs); | 
 | 	ctrl->oaes = le32_to_cpu(id->oaes); | 
 | 	atomic_set(&ctrl->abort_limit, id->acl + 1); | 
 | 	ctrl->vwc = id->vwc; | 
 | 	ctrl->cntlid = le16_to_cpup(&id->cntlid); | 
 | 	if (id->mdts) | 
 | 		max_hw_sectors = 1 << (id->mdts + page_shift - 9); | 
 | 	else | 
 | 		max_hw_sectors = UINT_MAX; | 
 | 	ctrl->max_hw_sectors = | 
 | 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); | 
 |  | 
 | 	nvme_set_queue_limits(ctrl, ctrl->admin_q); | 
 | 	ctrl->sgls = le32_to_cpu(id->sgls); | 
 | 	ctrl->kas = le16_to_cpu(id->kas); | 
 | 	ctrl->max_namespaces = le32_to_cpu(id->mnan); | 
 |  | 
 | 	if (id->rtd3e) { | 
 | 		/* us -> s */ | 
 | 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; | 
 |  | 
 | 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, | 
 | 						 shutdown_timeout, 60); | 
 |  | 
 | 		if (ctrl->shutdown_timeout != shutdown_timeout) | 
 | 			dev_info(ctrl->device, | 
 | 				 "Shutdown timeout set to %u seconds\n", | 
 | 				 ctrl->shutdown_timeout); | 
 | 	} else | 
 | 		ctrl->shutdown_timeout = shutdown_timeout; | 
 |  | 
 | 	ctrl->npss = id->npss; | 
 | 	ctrl->apsta = id->apsta; | 
 | 	prev_apst_enabled = ctrl->apst_enabled; | 
 | 	if (ctrl->quirks & NVME_QUIRK_NO_APST) { | 
 | 		if (force_apst && id->apsta) { | 
 | 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); | 
 | 			ctrl->apst_enabled = true; | 
 | 		} else { | 
 | 			ctrl->apst_enabled = false; | 
 | 		} | 
 | 	} else { | 
 | 		ctrl->apst_enabled = id->apsta; | 
 | 	} | 
 | 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); | 
 |  | 
 | 	if (ctrl->ops->flags & NVME_F_FABRICS) { | 
 | 		ctrl->icdoff = le16_to_cpu(id->icdoff); | 
 | 		ctrl->ioccsz = le32_to_cpu(id->ioccsz); | 
 | 		ctrl->iorcsz = le32_to_cpu(id->iorcsz); | 
 | 		ctrl->maxcmd = le16_to_cpu(id->maxcmd); | 
 |  | 
 | 		/* | 
 | 		 * In fabrics we need to verify the cntlid matches the | 
 | 		 * admin connect | 
 | 		 */ | 
 | 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { | 
 | 			ret = -EINVAL; | 
 | 			goto out_free; | 
 | 		} | 
 |  | 
 | 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) { | 
 | 			dev_err(ctrl->device, | 
 | 				"keep-alive support is mandatory for fabrics\n"); | 
 | 			ret = -EINVAL; | 
 | 			goto out_free; | 
 | 		} | 
 | 	} else { | 
 | 		ctrl->cntlid = le16_to_cpu(id->cntlid); | 
 | 		ctrl->hmpre = le32_to_cpu(id->hmpre); | 
 | 		ctrl->hmmin = le32_to_cpu(id->hmmin); | 
 | 		ctrl->hmminds = le32_to_cpu(id->hmminds); | 
 | 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); | 
 | 	} | 
 |  | 
 | 	ret = nvme_mpath_init(ctrl, id); | 
 | 	kfree(id); | 
 |  | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (ctrl->apst_enabled && !prev_apst_enabled) | 
 | 		dev_pm_qos_expose_latency_tolerance(ctrl->device); | 
 | 	else if (!ctrl->apst_enabled && prev_apst_enabled) | 
 | 		dev_pm_qos_hide_latency_tolerance(ctrl->device); | 
 |  | 
 | 	ret = nvme_configure_apst(ctrl); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	 | 
 | 	ret = nvme_configure_timestamp(ctrl); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	ret = nvme_configure_directives(ctrl); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	ctrl->identified = true; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	kfree(id); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_init_identify); | 
 |  | 
 | static int nvme_dev_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = | 
 | 		container_of(inode->i_cdev, struct nvme_ctrl, cdev); | 
 |  | 
 | 	switch (ctrl->state) { | 
 | 	case NVME_CTRL_LIVE: | 
 | 	case NVME_CTRL_ADMIN_ONLY: | 
 | 		break; | 
 | 	default: | 
 | 		return -EWOULDBLOCK; | 
 | 	} | 
 |  | 
 | 	file->private_data = ctrl; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 | 	int ret; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	if (list_empty(&ctrl->namespaces)) { | 
 | 		ret = -ENOTTY; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); | 
 | 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { | 
 | 		dev_warn(ctrl->device, | 
 | 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	dev_warn(ctrl->device, | 
 | 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); | 
 | 	kref_get(&ns->kref); | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 |  | 
 | 	ret = nvme_user_cmd(ctrl, ns, argp); | 
 | 	nvme_put_ns(ns); | 
 | 	return ret; | 
 |  | 
 | out_unlock: | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static long nvme_dev_ioctl(struct file *file, unsigned int cmd, | 
 | 		unsigned long arg) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = file->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case NVME_IOCTL_ADMIN_CMD: | 
 | 		return nvme_user_cmd(ctrl, NULL, argp); | 
 | 	case NVME_IOCTL_IO_CMD: | 
 | 		return nvme_dev_user_cmd(ctrl, argp); | 
 | 	case NVME_IOCTL_RESET: | 
 | 		dev_warn(ctrl->device, "resetting controller\n"); | 
 | 		return nvme_reset_ctrl_sync(ctrl); | 
 | 	case NVME_IOCTL_SUBSYS_RESET: | 
 | 		return nvme_reset_subsystem(ctrl); | 
 | 	case NVME_IOCTL_RESCAN: | 
 | 		nvme_queue_scan(ctrl); | 
 | 		return 0; | 
 | 	default: | 
 | 		return -ENOTTY; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct file_operations nvme_dev_fops = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.open		= nvme_dev_open, | 
 | 	.unlocked_ioctl	= nvme_dev_ioctl, | 
 | 	.compat_ioctl	= nvme_dev_ioctl, | 
 | }; | 
 |  | 
 | static ssize_t nvme_sysfs_reset(struct device *dev, | 
 | 				struct device_attribute *attr, const char *buf, | 
 | 				size_t count) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = nvme_reset_ctrl_sync(ctrl); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); | 
 |  | 
 | static ssize_t nvme_sysfs_rescan(struct device *dev, | 
 | 				struct device_attribute *attr, const char *buf, | 
 | 				size_t count) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 |  | 
 | 	nvme_queue_scan(ctrl); | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); | 
 |  | 
 | static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) | 
 | { | 
 | 	struct gendisk *disk = dev_to_disk(dev); | 
 |  | 
 | 	if (disk->fops == &nvme_fops) | 
 | 		return nvme_get_ns_from_dev(dev)->head; | 
 | 	else | 
 | 		return disk->private_data; | 
 | } | 
 |  | 
 | static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, | 
 | 		char *buf) | 
 | { | 
 | 	struct nvme_ns_head *head = dev_to_ns_head(dev); | 
 | 	struct nvme_ns_ids *ids = &head->ids; | 
 | 	struct nvme_subsystem *subsys = head->subsys; | 
 | 	int serial_len = sizeof(subsys->serial); | 
 | 	int model_len = sizeof(subsys->model); | 
 |  | 
 | 	if (!uuid_is_null(&ids->uuid)) | 
 | 		return sprintf(buf, "uuid.%pU\n", &ids->uuid); | 
 |  | 
 | 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) | 
 | 		return sprintf(buf, "eui.%16phN\n", ids->nguid); | 
 |  | 
 | 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) | 
 | 		return sprintf(buf, "eui.%8phN\n", ids->eui64); | 
 |  | 
 | 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || | 
 | 				  subsys->serial[serial_len - 1] == '\0')) | 
 | 		serial_len--; | 
 | 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || | 
 | 				 subsys->model[model_len - 1] == '\0')) | 
 | 		model_len--; | 
 |  | 
 | 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, | 
 | 		serial_len, subsys->serial, model_len, subsys->model, | 
 | 		head->ns_id); | 
 | } | 
 | static DEVICE_ATTR_RO(wwid); | 
 |  | 
 | static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, | 
 | 		char *buf) | 
 | { | 
 | 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); | 
 | } | 
 | static DEVICE_ATTR_RO(nguid); | 
 |  | 
 | static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, | 
 | 		char *buf) | 
 | { | 
 | 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; | 
 |  | 
 | 	/* For backward compatibility expose the NGUID to userspace if | 
 | 	 * we have no UUID set | 
 | 	 */ | 
 | 	if (uuid_is_null(&ids->uuid)) { | 
 | 		printk_ratelimited(KERN_WARNING | 
 | 				   "No UUID available providing old NGUID\n"); | 
 | 		return sprintf(buf, "%pU\n", ids->nguid); | 
 | 	} | 
 | 	return sprintf(buf, "%pU\n", &ids->uuid); | 
 | } | 
 | static DEVICE_ATTR_RO(uuid); | 
 |  | 
 | static ssize_t eui_show(struct device *dev, struct device_attribute *attr, | 
 | 		char *buf) | 
 | { | 
 | 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); | 
 | } | 
 | static DEVICE_ATTR_RO(eui); | 
 |  | 
 | static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, | 
 | 		char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); | 
 | } | 
 | static DEVICE_ATTR_RO(nsid); | 
 |  | 
 | static struct attribute *nvme_ns_id_attrs[] = { | 
 | 	&dev_attr_wwid.attr, | 
 | 	&dev_attr_uuid.attr, | 
 | 	&dev_attr_nguid.attr, | 
 | 	&dev_attr_eui.attr, | 
 | 	&dev_attr_nsid.attr, | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | 	&dev_attr_ana_grpid.attr, | 
 | 	&dev_attr_ana_state.attr, | 
 | #endif | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, | 
 | 		struct attribute *a, int n) | 
 | { | 
 | 	struct device *dev = container_of(kobj, struct device, kobj); | 
 | 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; | 
 |  | 
 | 	if (a == &dev_attr_uuid.attr) { | 
 | 		if (uuid_is_null(&ids->uuid) && | 
 | 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) | 
 | 			return 0; | 
 | 	} | 
 | 	if (a == &dev_attr_nguid.attr) { | 
 | 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) | 
 | 			return 0; | 
 | 	} | 
 | 	if (a == &dev_attr_eui.attr) { | 
 | 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) | 
 | 			return 0; | 
 | 	} | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { | 
 | 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ | 
 | 			return 0; | 
 | 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) | 
 | 			return 0; | 
 | 	} | 
 | #endif | 
 | 	return a->mode; | 
 | } | 
 |  | 
 | static const struct attribute_group nvme_ns_id_attr_group = { | 
 | 	.attrs		= nvme_ns_id_attrs, | 
 | 	.is_visible	= nvme_ns_id_attrs_are_visible, | 
 | }; | 
 |  | 
 | const struct attribute_group *nvme_ns_id_attr_groups[] = { | 
 | 	&nvme_ns_id_attr_group, | 
 | #ifdef CONFIG_NVM | 
 | 	&nvme_nvm_attr_group, | 
 | #endif | 
 | 	NULL, | 
 | }; | 
 |  | 
 | #define nvme_show_str_function(field)						\ | 
 | static ssize_t  field##_show(struct device *dev,				\ | 
 | 			    struct device_attribute *attr, char *buf)		\ | 
 | {										\ | 
 |         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\ | 
 |         return sprintf(buf, "%.*s\n",						\ | 
 | 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\ | 
 | }										\ | 
 | static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); | 
 |  | 
 | nvme_show_str_function(model); | 
 | nvme_show_str_function(serial); | 
 | nvme_show_str_function(firmware_rev); | 
 |  | 
 | #define nvme_show_int_function(field)						\ | 
 | static ssize_t  field##_show(struct device *dev,				\ | 
 | 			    struct device_attribute *attr, char *buf)		\ | 
 | {										\ | 
 |         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\ | 
 |         return sprintf(buf, "%d\n", ctrl->field);	\ | 
 | }										\ | 
 | static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); | 
 |  | 
 | nvme_show_int_function(cntlid); | 
 |  | 
 | static ssize_t nvme_sysfs_delete(struct device *dev, | 
 | 				struct device_attribute *attr, const char *buf, | 
 | 				size_t count) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 |  | 
 | 	if (device_remove_file_self(dev, attr)) | 
 | 		nvme_delete_ctrl_sync(ctrl); | 
 | 	return count; | 
 | } | 
 | static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); | 
 |  | 
 | static ssize_t nvme_sysfs_show_transport(struct device *dev, | 
 | 					 struct device_attribute *attr, | 
 | 					 char *buf) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 |  | 
 | 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); | 
 | } | 
 | static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); | 
 |  | 
 | static ssize_t nvme_sysfs_show_state(struct device *dev, | 
 | 				     struct device_attribute *attr, | 
 | 				     char *buf) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 | 	static const char *const state_name[] = { | 
 | 		[NVME_CTRL_NEW]		= "new", | 
 | 		[NVME_CTRL_LIVE]	= "live", | 
 | 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin", | 
 | 		[NVME_CTRL_RESETTING]	= "resetting", | 
 | 		[NVME_CTRL_CONNECTING]	= "connecting", | 
 | 		[NVME_CTRL_DELETING]	= "deleting", | 
 | 		[NVME_CTRL_DEAD]	= "dead", | 
 | 	}; | 
 |  | 
 | 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && | 
 | 	    state_name[ctrl->state]) | 
 | 		return sprintf(buf, "%s\n", state_name[ctrl->state]); | 
 |  | 
 | 	return sprintf(buf, "unknown state\n"); | 
 | } | 
 |  | 
 | static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); | 
 |  | 
 | static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, | 
 | 					 struct device_attribute *attr, | 
 | 					 char *buf) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 |  | 
 | 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); | 
 | } | 
 | static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); | 
 |  | 
 | static ssize_t nvme_sysfs_show_address(struct device *dev, | 
 | 					 struct device_attribute *attr, | 
 | 					 char *buf) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 |  | 
 | 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); | 
 | } | 
 | static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); | 
 |  | 
 | static struct attribute *nvme_dev_attrs[] = { | 
 | 	&dev_attr_reset_controller.attr, | 
 | 	&dev_attr_rescan_controller.attr, | 
 | 	&dev_attr_model.attr, | 
 | 	&dev_attr_serial.attr, | 
 | 	&dev_attr_firmware_rev.attr, | 
 | 	&dev_attr_cntlid.attr, | 
 | 	&dev_attr_delete_controller.attr, | 
 | 	&dev_attr_transport.attr, | 
 | 	&dev_attr_subsysnqn.attr, | 
 | 	&dev_attr_address.attr, | 
 | 	&dev_attr_state.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, | 
 | 		struct attribute *a, int n) | 
 | { | 
 | 	struct device *dev = container_of(kobj, struct device, kobj); | 
 | 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev); | 
 |  | 
 | 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) | 
 | 		return 0; | 
 | 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address) | 
 | 		return 0; | 
 |  | 
 | 	return a->mode; | 
 | } | 
 |  | 
 | static struct attribute_group nvme_dev_attrs_group = { | 
 | 	.attrs		= nvme_dev_attrs, | 
 | 	.is_visible	= nvme_dev_attrs_are_visible, | 
 | }; | 
 |  | 
 | static const struct attribute_group *nvme_dev_attr_groups[] = { | 
 | 	&nvme_dev_attrs_group, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, | 
 | 		unsigned nsid) | 
 | { | 
 | 	struct nvme_ns_head *h; | 
 |  | 
 | 	lockdep_assert_held(&subsys->lock); | 
 |  | 
 | 	list_for_each_entry(h, &subsys->nsheads, entry) { | 
 | 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) | 
 | 			return h; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __nvme_check_ids(struct nvme_subsystem *subsys, | 
 | 		struct nvme_ns_head *new) | 
 | { | 
 | 	struct nvme_ns_head *h; | 
 |  | 
 | 	lockdep_assert_held(&subsys->lock); | 
 |  | 
 | 	list_for_each_entry(h, &subsys->nsheads, entry) { | 
 | 		if (nvme_ns_ids_valid(&new->ids) && | 
 | 		    !list_empty(&h->list) && | 
 | 		    nvme_ns_ids_equal(&new->ids, &h->ids)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, | 
 | 		unsigned nsid, struct nvme_id_ns *id) | 
 | { | 
 | 	struct nvme_ns_head *head; | 
 | 	size_t size = sizeof(*head); | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | 	size += num_possible_nodes() * sizeof(struct nvme_ns *); | 
 | #endif | 
 |  | 
 | 	head = kzalloc(size, GFP_KERNEL); | 
 | 	if (!head) | 
 | 		goto out; | 
 | 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); | 
 | 	if (ret < 0) | 
 | 		goto out_free_head; | 
 | 	head->instance = ret; | 
 | 	INIT_LIST_HEAD(&head->list); | 
 | 	ret = init_srcu_struct(&head->srcu); | 
 | 	if (ret) | 
 | 		goto out_ida_remove; | 
 | 	head->subsys = ctrl->subsys; | 
 | 	head->ns_id = nsid; | 
 | 	kref_init(&head->ref); | 
 |  | 
 | 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids); | 
 |  | 
 | 	ret = __nvme_check_ids(ctrl->subsys, head); | 
 | 	if (ret) { | 
 | 		dev_err(ctrl->device, | 
 | 			"duplicate IDs for nsid %d\n", nsid); | 
 | 		goto out_cleanup_srcu; | 
 | 	} | 
 |  | 
 | 	ret = nvme_mpath_alloc_disk(ctrl, head); | 
 | 	if (ret) | 
 | 		goto out_cleanup_srcu; | 
 |  | 
 | 	list_add_tail(&head->entry, &ctrl->subsys->nsheads); | 
 |  | 
 | 	kref_get(&ctrl->subsys->ref); | 
 |  | 
 | 	return head; | 
 | out_cleanup_srcu: | 
 | 	cleanup_srcu_struct(&head->srcu); | 
 | out_ida_remove: | 
 | 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); | 
 | out_free_head: | 
 | 	kfree(head); | 
 | out: | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, | 
 | 		struct nvme_id_ns *id) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = ns->ctrl; | 
 | 	bool is_shared = id->nmic & (1 << 0); | 
 | 	struct nvme_ns_head *head = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&ctrl->subsys->lock); | 
 | 	if (is_shared) | 
 | 		head = __nvme_find_ns_head(ctrl->subsys, nsid); | 
 | 	if (!head) { | 
 | 		head = nvme_alloc_ns_head(ctrl, nsid, id); | 
 | 		if (IS_ERR(head)) { | 
 | 			ret = PTR_ERR(head); | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} else { | 
 | 		struct nvme_ns_ids ids; | 
 |  | 
 | 		nvme_report_ns_ids(ctrl, nsid, id, &ids); | 
 | 		if (!nvme_ns_ids_equal(&head->ids, &ids)) { | 
 | 			dev_err(ctrl->device, | 
 | 				"IDs don't match for shared namespace %d\n", | 
 | 					nsid); | 
 | 			ret = -EINVAL; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_add_tail(&ns->siblings, &head->list); | 
 | 	ns->head = head; | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&ctrl->subsys->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) | 
 | { | 
 | 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); | 
 | 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); | 
 |  | 
 | 	return nsa->head->ns_id - nsb->head->ns_id; | 
 | } | 
 |  | 
 | static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) | 
 | { | 
 | 	struct nvme_ns *ns, *ret = NULL; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) { | 
 | 		if (ns->head->ns_id == nsid) { | 
 | 			if (!kref_get_unless_zero(&ns->kref)) | 
 | 				continue; | 
 | 			ret = ns; | 
 | 			break; | 
 | 		} | 
 | 		if (ns->head->ns_id > nsid) | 
 | 			break; | 
 | 	} | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) | 
 | { | 
 | 	struct streams_directive_params s; | 
 | 	int ret; | 
 |  | 
 | 	if (!ctrl->nr_streams) | 
 | 		return 0; | 
 |  | 
 | 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ns->sws = le32_to_cpu(s.sws); | 
 | 	ns->sgs = le16_to_cpu(s.sgs); | 
 |  | 
 | 	if (ns->sws) { | 
 | 		unsigned int bs = 1 << ns->lba_shift; | 
 |  | 
 | 		blk_queue_io_min(ns->queue, bs * ns->sws); | 
 | 		if (ns->sgs) | 
 | 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 | 	struct gendisk *disk; | 
 | 	struct nvme_id_ns *id; | 
 | 	char disk_name[DISK_NAME_LEN]; | 
 | 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT; | 
 |  | 
 | 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); | 
 | 	if (!ns) | 
 | 		return; | 
 |  | 
 | 	ns->queue = blk_mq_init_queue(ctrl->tagset); | 
 | 	if (IS_ERR(ns->queue)) | 
 | 		goto out_free_ns; | 
 |  | 
 | 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); | 
 | 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) | 
 | 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); | 
 |  | 
 | 	ns->queue->queuedata = ns; | 
 | 	ns->ctrl = ctrl; | 
 |  | 
 | 	kref_init(&ns->kref); | 
 | 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ | 
 |  | 
 | 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); | 
 | 	nvme_set_queue_limits(ctrl, ns->queue); | 
 |  | 
 | 	id = nvme_identify_ns(ctrl, nsid); | 
 | 	if (!id) | 
 | 		goto out_free_queue; | 
 |  | 
 | 	if (id->ncap == 0) | 
 | 		goto out_free_id; | 
 |  | 
 | 	if (nvme_init_ns_head(ns, nsid, id)) | 
 | 		goto out_free_id; | 
 | 	nvme_setup_streams_ns(ctrl, ns); | 
 | 	nvme_set_disk_name(disk_name, ns, ctrl, &flags); | 
 |  | 
 | 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { | 
 | 		if (nvme_nvm_register(ns, disk_name, node)) { | 
 | 			dev_warn(ctrl->device, "LightNVM init failure\n"); | 
 | 			goto out_unlink_ns; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	disk = alloc_disk_node(0, node); | 
 | 	if (!disk) | 
 | 		goto out_unlink_ns; | 
 |  | 
 | 	disk->fops = &nvme_fops; | 
 | 	disk->private_data = ns; | 
 | 	disk->queue = ns->queue; | 
 | 	disk->flags = flags; | 
 | 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); | 
 | 	ns->disk = disk; | 
 |  | 
 | 	__nvme_revalidate_disk(disk, id); | 
 |  | 
 | 	down_write(&ctrl->namespaces_rwsem); | 
 | 	list_add_tail(&ns->list, &ctrl->namespaces); | 
 | 	up_write(&ctrl->namespaces_rwsem); | 
 |  | 
 | 	nvme_get_ctrl(ctrl); | 
 |  | 
 | 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); | 
 |  | 
 | 	nvme_mpath_add_disk(ns, id); | 
 | 	nvme_fault_inject_init(ns); | 
 | 	kfree(id); | 
 |  | 
 | 	return; | 
 |  out_unlink_ns: | 
 | 	mutex_lock(&ctrl->subsys->lock); | 
 | 	list_del_rcu(&ns->siblings); | 
 | 	mutex_unlock(&ctrl->subsys->lock); | 
 |  out_free_id: | 
 | 	kfree(id); | 
 |  out_free_queue: | 
 | 	blk_cleanup_queue(ns->queue); | 
 |  out_free_ns: | 
 | 	kfree(ns); | 
 | } | 
 |  | 
 | static void nvme_ns_remove(struct nvme_ns *ns) | 
 | { | 
 | 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) | 
 | 		return; | 
 |  | 
 | 	nvme_fault_inject_fini(ns); | 
 | 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) { | 
 | 		del_gendisk(ns->disk); | 
 | 		blk_cleanup_queue(ns->queue); | 
 | 		if (blk_get_integrity(ns->disk)) | 
 | 			blk_integrity_unregister(ns->disk); | 
 | 	} | 
 |  | 
 | 	mutex_lock(&ns->ctrl->subsys->lock); | 
 | 	list_del_rcu(&ns->siblings); | 
 | 	nvme_mpath_clear_current_path(ns); | 
 | 	mutex_unlock(&ns->ctrl->subsys->lock); | 
 |  | 
 | 	down_write(&ns->ctrl->namespaces_rwsem); | 
 | 	list_del_init(&ns->list); | 
 | 	up_write(&ns->ctrl->namespaces_rwsem); | 
 |  | 
 | 	synchronize_srcu(&ns->head->srcu); | 
 | 	nvme_mpath_check_last_path(ns); | 
 | 	nvme_put_ns(ns); | 
 | } | 
 |  | 
 | static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	ns = nvme_find_get_ns(ctrl, nsid); | 
 | 	if (ns) { | 
 | 		if (ns->disk && revalidate_disk(ns->disk)) | 
 | 			nvme_ns_remove(ns); | 
 | 		nvme_put_ns(ns); | 
 | 	} else | 
 | 		nvme_alloc_ns(ctrl, nsid); | 
 | } | 
 |  | 
 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, | 
 | 					unsigned nsid) | 
 | { | 
 | 	struct nvme_ns *ns, *next; | 
 | 	LIST_HEAD(rm_list); | 
 |  | 
 | 	down_write(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { | 
 | 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) | 
 | 			list_move_tail(&ns->list, &rm_list); | 
 | 	} | 
 | 	up_write(&ctrl->namespaces_rwsem); | 
 |  | 
 | 	list_for_each_entry_safe(ns, next, &rm_list, list) | 
 | 		nvme_ns_remove(ns); | 
 |  | 
 | } | 
 |  | 
 | static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 | 	__le32 *ns_list; | 
 | 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); | 
 | 	int ret = 0; | 
 |  | 
 | 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); | 
 | 	if (!ns_list) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < num_lists; i++) { | 
 | 		ret = nvme_identify_ns_list(ctrl, prev, ns_list); | 
 | 		if (ret) | 
 | 			goto free; | 
 |  | 
 | 		for (j = 0; j < min(nn, 1024U); j++) { | 
 | 			nsid = le32_to_cpu(ns_list[j]); | 
 | 			if (!nsid) | 
 | 				goto out; | 
 |  | 
 | 			nvme_validate_ns(ctrl, nsid); | 
 |  | 
 | 			while (++prev < nsid) { | 
 | 				ns = nvme_find_get_ns(ctrl, prev); | 
 | 				if (ns) { | 
 | 					nvme_ns_remove(ns); | 
 | 					nvme_put_ns(ns); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		nn -= j; | 
 | 	} | 
 |  out: | 
 | 	nvme_remove_invalid_namespaces(ctrl, prev); | 
 |  free: | 
 | 	kfree(ns_list); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 1; i <= nn; i++) | 
 | 		nvme_validate_ns(ctrl, i); | 
 |  | 
 | 	nvme_remove_invalid_namespaces(ctrl, nn); | 
 | } | 
 |  | 
 | static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); | 
 | 	__le32 *log; | 
 | 	int error; | 
 |  | 
 | 	log = kzalloc(log_size, GFP_KERNEL); | 
 | 	if (!log) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We need to read the log to clear the AEN, but we don't want to rely | 
 | 	 * on it for the changed namespace information as userspace could have | 
 | 	 * raced with us in reading the log page, which could cause us to miss | 
 | 	 * updates. | 
 | 	 */ | 
 | 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, | 
 | 			log_size, 0); | 
 | 	if (error) | 
 | 		dev_warn(ctrl->device, | 
 | 			"reading changed ns log failed: %d\n", error); | 
 |  | 
 | 	kfree(log); | 
 | } | 
 |  | 
 | static void nvme_scan_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = | 
 | 		container_of(work, struct nvme_ctrl, scan_work); | 
 | 	struct nvme_id_ctrl *id; | 
 | 	unsigned nn; | 
 |  | 
 | 	if (ctrl->state != NVME_CTRL_LIVE) | 
 | 		return; | 
 |  | 
 | 	WARN_ON_ONCE(!ctrl->tagset); | 
 |  | 
 | 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { | 
 | 		dev_info(ctrl->device, "rescanning namespaces.\n"); | 
 | 		nvme_clear_changed_ns_log(ctrl); | 
 | 	} | 
 |  | 
 | 	if (nvme_identify_ctrl(ctrl, &id)) | 
 | 		return; | 
 |  | 
 | 	nn = le32_to_cpu(id->nn); | 
 | 	if (ctrl->vs >= NVME_VS(1, 1, 0) && | 
 | 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { | 
 | 		if (!nvme_scan_ns_list(ctrl, nn)) | 
 | 			goto out_free_id; | 
 | 	} | 
 | 	nvme_scan_ns_sequential(ctrl, nn); | 
 | out_free_id: | 
 | 	kfree(id); | 
 | 	down_write(&ctrl->namespaces_rwsem); | 
 | 	list_sort(NULL, &ctrl->namespaces, ns_cmp); | 
 | 	up_write(&ctrl->namespaces_rwsem); | 
 | } | 
 |  | 
 | /* | 
 |  * This function iterates the namespace list unlocked to allow recovery from | 
 |  * controller failure. It is up to the caller to ensure the namespace list is | 
 |  * not modified by scan work while this function is executing. | 
 |  */ | 
 | void nvme_remove_namespaces(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns, *next; | 
 | 	LIST_HEAD(ns_list); | 
 |  | 
 | 	/* | 
 | 	 * The dead states indicates the controller was not gracefully | 
 | 	 * disconnected. In that case, we won't be able to flush any data while | 
 | 	 * removing the namespaces' disks; fail all the queues now to avoid | 
 | 	 * potentially having to clean up the failed sync later. | 
 | 	 */ | 
 | 	if (ctrl->state == NVME_CTRL_DEAD) | 
 | 		nvme_kill_queues(ctrl); | 
 |  | 
 | 	down_write(&ctrl->namespaces_rwsem); | 
 | 	list_splice_init(&ctrl->namespaces, &ns_list); | 
 | 	up_write(&ctrl->namespaces_rwsem); | 
 |  | 
 | 	list_for_each_entry_safe(ns, next, &ns_list, list) | 
 | 		nvme_ns_remove(ns); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_remove_namespaces); | 
 |  | 
 | static void nvme_aen_uevent(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	char *envp[2] = { NULL, NULL }; | 
 | 	u32 aen_result = ctrl->aen_result; | 
 |  | 
 | 	ctrl->aen_result = 0; | 
 | 	if (!aen_result) | 
 | 		return; | 
 |  | 
 | 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); | 
 | 	if (!envp[0]) | 
 | 		return; | 
 | 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); | 
 | 	kfree(envp[0]); | 
 | } | 
 |  | 
 | static void nvme_async_event_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = | 
 | 		container_of(work, struct nvme_ctrl, async_event_work); | 
 |  | 
 | 	nvme_aen_uevent(ctrl); | 
 | 	ctrl->ops->submit_async_event(ctrl); | 
 | } | 
 |  | 
 | static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) | 
 | { | 
 |  | 
 | 	u32 csts; | 
 |  | 
 | 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) | 
 | 		return false; | 
 |  | 
 | 	if (csts == ~0) | 
 | 		return false; | 
 |  | 
 | 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); | 
 | } | 
 |  | 
 | static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_fw_slot_info_log *log; | 
 |  | 
 | 	log = kmalloc(sizeof(*log), GFP_KERNEL); | 
 | 	if (!log) | 
 | 		return; | 
 |  | 
 | 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, | 
 | 			sizeof(*log), 0)) | 
 | 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); | 
 | 	kfree(log); | 
 | } | 
 |  | 
 | static void nvme_fw_act_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = container_of(work, | 
 | 				struct nvme_ctrl, fw_act_work); | 
 | 	unsigned long fw_act_timeout; | 
 |  | 
 | 	if (ctrl->mtfa) | 
 | 		fw_act_timeout = jiffies + | 
 | 				msecs_to_jiffies(ctrl->mtfa * 100); | 
 | 	else | 
 | 		fw_act_timeout = jiffies + | 
 | 				msecs_to_jiffies(admin_timeout * 1000); | 
 |  | 
 | 	nvme_stop_queues(ctrl); | 
 | 	while (nvme_ctrl_pp_status(ctrl)) { | 
 | 		if (time_after(jiffies, fw_act_timeout)) { | 
 | 			dev_warn(ctrl->device, | 
 | 				"Fw activation timeout, reset controller\n"); | 
 | 			nvme_reset_ctrl(ctrl); | 
 | 			break; | 
 | 		} | 
 | 		msleep(100); | 
 | 	} | 
 |  | 
 | 	if (ctrl->state != NVME_CTRL_LIVE) | 
 | 		return; | 
 |  | 
 | 	nvme_start_queues(ctrl); | 
 | 	/* read FW slot information to clear the AER */ | 
 | 	nvme_get_fw_slot_info(ctrl); | 
 | } | 
 |  | 
 | static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) | 
 | { | 
 | 	u32 aer_notice_type = (result & 0xff00) >> 8; | 
 |  | 
 | 	switch (aer_notice_type) { | 
 | 	case NVME_AER_NOTICE_NS_CHANGED: | 
 | 		trace_nvme_async_event(ctrl, aer_notice_type); | 
 | 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); | 
 | 		nvme_queue_scan(ctrl); | 
 | 		break; | 
 | 	case NVME_AER_NOTICE_FW_ACT_STARTING: | 
 | 		trace_nvme_async_event(ctrl, aer_notice_type); | 
 | 		queue_work(nvme_wq, &ctrl->fw_act_work); | 
 | 		break; | 
 | #ifdef CONFIG_NVME_MULTIPATH | 
 | 	case NVME_AER_NOTICE_ANA: | 
 | 		trace_nvme_async_event(ctrl, aer_notice_type); | 
 | 		if (!ctrl->ana_log_buf) | 
 | 			break; | 
 | 		queue_work(nvme_wq, &ctrl->ana_work); | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		dev_warn(ctrl->device, "async event result %08x\n", result); | 
 | 	} | 
 | } | 
 |  | 
 | void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, | 
 | 		volatile union nvme_result *res) | 
 | { | 
 | 	u32 result = le32_to_cpu(res->u32); | 
 | 	u32 aer_type = result & 0x07; | 
 |  | 
 | 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) | 
 | 		return; | 
 |  | 
 | 	switch (aer_type) { | 
 | 	case NVME_AER_NOTICE: | 
 | 		nvme_handle_aen_notice(ctrl, result); | 
 | 		break; | 
 | 	case NVME_AER_ERROR: | 
 | 	case NVME_AER_SMART: | 
 | 	case NVME_AER_CSS: | 
 | 	case NVME_AER_VS: | 
 | 		trace_nvme_async_event(ctrl, aer_type); | 
 | 		ctrl->aen_result = result; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	queue_work(nvme_wq, &ctrl->async_event_work); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_complete_async_event); | 
 |  | 
 | void nvme_stop_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	nvme_mpath_stop(ctrl); | 
 | 	nvme_stop_keep_alive(ctrl); | 
 | 	flush_work(&ctrl->async_event_work); | 
 | 	flush_work(&ctrl->scan_work); | 
 | 	cancel_work_sync(&ctrl->fw_act_work); | 
 | 	if (ctrl->ops->stop_ctrl) | 
 | 		ctrl->ops->stop_ctrl(ctrl); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_stop_ctrl); | 
 |  | 
 | void nvme_start_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	if (ctrl->kato) | 
 | 		nvme_start_keep_alive(ctrl); | 
 |  | 
 | 	if (ctrl->queue_count > 1) { | 
 | 		nvme_queue_scan(ctrl); | 
 | 		nvme_enable_aen(ctrl); | 
 | 		queue_work(nvme_wq, &ctrl->async_event_work); | 
 | 		nvme_start_queues(ctrl); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_start_ctrl); | 
 |  | 
 | void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	cdev_device_del(&ctrl->cdev, ctrl->device); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); | 
 |  | 
 | static void nvme_free_ctrl(struct device *dev) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = | 
 | 		container_of(dev, struct nvme_ctrl, ctrl_device); | 
 | 	struct nvme_subsystem *subsys = ctrl->subsys; | 
 |  | 
 | 	ida_simple_remove(&nvme_instance_ida, ctrl->instance); | 
 | 	kfree(ctrl->effects); | 
 | 	nvme_mpath_uninit(ctrl); | 
 |  | 
 | 	if (subsys) { | 
 | 		mutex_lock(&subsys->lock); | 
 | 		list_del(&ctrl->subsys_entry); | 
 | 		mutex_unlock(&subsys->lock); | 
 | 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); | 
 | 	} | 
 |  | 
 | 	ctrl->ops->free_ctrl(ctrl); | 
 |  | 
 | 	if (subsys) | 
 | 		nvme_put_subsystem(subsys); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize a NVMe controller structures.  This needs to be called during | 
 |  * earliest initialization so that we have the initialized structured around | 
 |  * during probing. | 
 |  */ | 
 | int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, | 
 | 		const struct nvme_ctrl_ops *ops, unsigned long quirks) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ctrl->state = NVME_CTRL_NEW; | 
 | 	spin_lock_init(&ctrl->lock); | 
 | 	INIT_LIST_HEAD(&ctrl->namespaces); | 
 | 	init_rwsem(&ctrl->namespaces_rwsem); | 
 | 	ctrl->dev = dev; | 
 | 	ctrl->ops = ops; | 
 | 	ctrl->quirks = quirks; | 
 | 	INIT_WORK(&ctrl->scan_work, nvme_scan_work); | 
 | 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); | 
 | 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); | 
 | 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); | 
 |  | 
 | 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); | 
 | 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); | 
 | 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; | 
 |  | 
 | 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ctrl->instance = ret; | 
 |  | 
 | 	device_initialize(&ctrl->ctrl_device); | 
 | 	ctrl->device = &ctrl->ctrl_device; | 
 | 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); | 
 | 	ctrl->device->class = nvme_class; | 
 | 	ctrl->device->parent = ctrl->dev; | 
 | 	ctrl->device->groups = nvme_dev_attr_groups; | 
 | 	ctrl->device->release = nvme_free_ctrl; | 
 | 	dev_set_drvdata(ctrl->device, ctrl); | 
 | 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); | 
 | 	if (ret) | 
 | 		goto out_release_instance; | 
 |  | 
 | 	cdev_init(&ctrl->cdev, &nvme_dev_fops); | 
 | 	ctrl->cdev.owner = ops->module; | 
 | 	ret = cdev_device_add(&ctrl->cdev, ctrl->device); | 
 | 	if (ret) | 
 | 		goto out_free_name; | 
 |  | 
 | 	/* | 
 | 	 * Initialize latency tolerance controls.  The sysfs files won't | 
 | 	 * be visible to userspace unless the device actually supports APST. | 
 | 	 */ | 
 | 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; | 
 | 	dev_pm_qos_update_user_latency_tolerance(ctrl->device, | 
 | 		min(default_ps_max_latency_us, (unsigned long)S32_MAX)); | 
 |  | 
 | 	return 0; | 
 | out_free_name: | 
 | 	kfree_const(dev->kobj.name); | 
 | out_release_instance: | 
 | 	ida_simple_remove(&nvme_instance_ida, ctrl->instance); | 
 | out: | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_init_ctrl); | 
 |  | 
 | /** | 
 |  * nvme_kill_queues(): Ends all namespace queues | 
 |  * @ctrl: the dead controller that needs to end | 
 |  * | 
 |  * Call this function when the driver determines it is unable to get the | 
 |  * controller in a state capable of servicing IO. | 
 |  */ | 
 | void nvme_kill_queues(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 |  | 
 | 	/* Forcibly unquiesce queues to avoid blocking dispatch */ | 
 | 	if (ctrl->admin_q) | 
 | 		blk_mq_unquiesce_queue(ctrl->admin_q); | 
 |  | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) | 
 | 		nvme_set_queue_dying(ns); | 
 |  | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_kill_queues); | 
 |  | 
 | void nvme_unfreeze(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) | 
 | 		blk_mq_unfreeze_queue(ns->queue); | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_unfreeze); | 
 |  | 
 | void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) { | 
 | 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); | 
 | 		if (timeout <= 0) | 
 | 			break; | 
 | 	} | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); | 
 |  | 
 | void nvme_wait_freeze(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) | 
 | 		blk_mq_freeze_queue_wait(ns->queue); | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_wait_freeze); | 
 |  | 
 | void nvme_start_freeze(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) | 
 | 		blk_freeze_queue_start(ns->queue); | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_start_freeze); | 
 |  | 
 | void nvme_stop_queues(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) | 
 | 		blk_mq_quiesce_queue(ns->queue); | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_stop_queues); | 
 |  | 
 | void nvme_start_queues(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_ns *ns; | 
 |  | 
 | 	down_read(&ctrl->namespaces_rwsem); | 
 | 	list_for_each_entry(ns, &ctrl->namespaces, list) | 
 | 		blk_mq_unquiesce_queue(ns->queue); | 
 | 	up_read(&ctrl->namespaces_rwsem); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvme_start_queues); | 
 |  | 
 | int __init nvme_core_init(void) | 
 | { | 
 | 	int result = -ENOMEM; | 
 |  | 
 | 	nvme_wq = alloc_workqueue("nvme-wq", | 
 | 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); | 
 | 	if (!nvme_wq) | 
 | 		goto out; | 
 |  | 
 | 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", | 
 | 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); | 
 | 	if (!nvme_reset_wq) | 
 | 		goto destroy_wq; | 
 |  | 
 | 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", | 
 | 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); | 
 | 	if (!nvme_delete_wq) | 
 | 		goto destroy_reset_wq; | 
 |  | 
 | 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); | 
 | 	if (result < 0) | 
 | 		goto destroy_delete_wq; | 
 |  | 
 | 	nvme_class = class_create(THIS_MODULE, "nvme"); | 
 | 	if (IS_ERR(nvme_class)) { | 
 | 		result = PTR_ERR(nvme_class); | 
 | 		goto unregister_chrdev; | 
 | 	} | 
 |  | 
 | 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); | 
 | 	if (IS_ERR(nvme_subsys_class)) { | 
 | 		result = PTR_ERR(nvme_subsys_class); | 
 | 		goto destroy_class; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | destroy_class: | 
 | 	class_destroy(nvme_class); | 
 | unregister_chrdev: | 
 | 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); | 
 | destroy_delete_wq: | 
 | 	destroy_workqueue(nvme_delete_wq); | 
 | destroy_reset_wq: | 
 | 	destroy_workqueue(nvme_reset_wq); | 
 | destroy_wq: | 
 | 	destroy_workqueue(nvme_wq); | 
 | out: | 
 | 	return result; | 
 | } | 
 |  | 
 | void nvme_core_exit(void) | 
 | { | 
 | 	ida_destroy(&nvme_subsystems_ida); | 
 | 	class_destroy(nvme_subsys_class); | 
 | 	class_destroy(nvme_class); | 
 | 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); | 
 | 	destroy_workqueue(nvme_delete_wq); | 
 | 	destroy_workqueue(nvme_reset_wq); | 
 | 	destroy_workqueue(nvme_wq); | 
 | } | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION("1.0"); | 
 | module_init(nvme_core_init); | 
 | module_exit(nvme_core_exit); |