blob: 12c8bd1d24d5321af7106c3738eeffbee056b25d [file] [log] [blame]
/*
* Copyright (C) 2010 Juergen Beisert, Pengutronix
*
* This code is based on:
* Author: Vitaly Wool <vital@embeddedalley.com>
*
* Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define DRIVER_NAME "mxsfb"
/**
* @file
* @brief LCDIF driver for i.MX23 and i.MX28
*
* The LCDIF support four modes of operation
* - MPU interface (to drive smart displays) -> not supported yet
* - VSYNC interface (like MPU interface plus Vsync) -> not supported yet
* - Dotclock interface (to drive LC displays with RGB data and sync signals)
* - DVI (to drive ITU-R BT656) -> not supported yet
*
* This driver depends on a correct setup of the pins used for this purpose
* (platform specific).
*
* For the developer: Don't forget to set the data bus width to the display
* in the imx_fb_videomode structure. You will else end up with ugly colours.
* If you fight against jitter you can vary the clock delay. This is a feature
* of the i.MX28 and you can vary it between 2 ns ... 8 ns in 2 ns steps. Give
* the required value in the imx_fb_videomode structure.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/fb.h>
#include <linux/regulator/consumer.h>
#include <video/of_display_timing.h>
#include <video/of_videomode.h>
#include <video/videomode.h>
#define REG_SET 4
#define REG_CLR 8
#define LCDC_CTRL 0x00
#define LCDC_CTRL1 0x10
#define LCDC_V4_CTRL2 0x20
#define LCDC_V3_TRANSFER_COUNT 0x20
#define LCDC_V4_TRANSFER_COUNT 0x30
#define LCDC_V4_CUR_BUF 0x40
#define LCDC_V4_NEXT_BUF 0x50
#define LCDC_V3_CUR_BUF 0x30
#define LCDC_V3_NEXT_BUF 0x40
#define LCDC_TIMING 0x60
#define LCDC_VDCTRL0 0x70
#define LCDC_VDCTRL1 0x80
#define LCDC_VDCTRL2 0x90
#define LCDC_VDCTRL3 0xa0
#define LCDC_VDCTRL4 0xb0
#define LCDC_DVICTRL0 0xc0
#define LCDC_DVICTRL1 0xd0
#define LCDC_DVICTRL2 0xe0
#define LCDC_DVICTRL3 0xf0
#define LCDC_DVICTRL4 0x100
#define LCDC_V4_DATA 0x180
#define LCDC_V3_DATA 0x1b0
#define LCDC_V4_DEBUG0 0x1d0
#define LCDC_V3_DEBUG0 0x1f0
#define CTRL_SFTRST (1 << 31)
#define CTRL_CLKGATE (1 << 30)
#define CTRL_BYPASS_COUNT (1 << 19)
#define CTRL_VSYNC_MODE (1 << 18)
#define CTRL_DOTCLK_MODE (1 << 17)
#define CTRL_DATA_SELECT (1 << 16)
#define CTRL_SET_BUS_WIDTH(x) (((x) & 0x3) << 10)
#define CTRL_GET_BUS_WIDTH(x) (((x) >> 10) & 0x3)
#define CTRL_SET_WORD_LENGTH(x) (((x) & 0x3) << 8)
#define CTRL_GET_WORD_LENGTH(x) (((x) >> 8) & 0x3)
#define CTRL_MASTER (1 << 5)
#define CTRL_DF16 (1 << 3)
#define CTRL_DF18 (1 << 2)
#define CTRL_DF24 (1 << 1)
#define CTRL_RUN (1 << 0)
#define CTRL1_FIFO_CLEAR (1 << 21)
#define CTRL1_SET_BYTE_PACKAGING(x) (((x) & 0xf) << 16)
#define CTRL1_GET_BYTE_PACKAGING(x) (((x) >> 16) & 0xf)
#define TRANSFER_COUNT_SET_VCOUNT(x) (((x) & 0xffff) << 16)
#define TRANSFER_COUNT_GET_VCOUNT(x) (((x) >> 16) & 0xffff)
#define TRANSFER_COUNT_SET_HCOUNT(x) ((x) & 0xffff)
#define TRANSFER_COUNT_GET_HCOUNT(x) ((x) & 0xffff)
#define VDCTRL0_ENABLE_PRESENT (1 << 28)
#define VDCTRL0_VSYNC_ACT_HIGH (1 << 27)
#define VDCTRL0_HSYNC_ACT_HIGH (1 << 26)
#define VDCTRL0_DOTCLK_ACT_FALLING (1 << 25)
#define VDCTRL0_ENABLE_ACT_HIGH (1 << 24)
#define VDCTRL0_VSYNC_PERIOD_UNIT (1 << 21)
#define VDCTRL0_VSYNC_PULSE_WIDTH_UNIT (1 << 20)
#define VDCTRL0_HALF_LINE (1 << 19)
#define VDCTRL0_HALF_LINE_MODE (1 << 18)
#define VDCTRL0_SET_VSYNC_PULSE_WIDTH(x) ((x) & 0x3ffff)
#define VDCTRL0_GET_VSYNC_PULSE_WIDTH(x) ((x) & 0x3ffff)
#define VDCTRL2_SET_HSYNC_PERIOD(x) ((x) & 0x3ffff)
#define VDCTRL2_GET_HSYNC_PERIOD(x) ((x) & 0x3ffff)
#define VDCTRL3_MUX_SYNC_SIGNALS (1 << 29)
#define VDCTRL3_VSYNC_ONLY (1 << 28)
#define SET_HOR_WAIT_CNT(x) (((x) & 0xfff) << 16)
#define GET_HOR_WAIT_CNT(x) (((x) >> 16) & 0xfff)
#define SET_VERT_WAIT_CNT(x) ((x) & 0xffff)
#define GET_VERT_WAIT_CNT(x) ((x) & 0xffff)
#define VDCTRL4_SET_DOTCLK_DLY(x) (((x) & 0x7) << 29) /* v4 only */
#define VDCTRL4_GET_DOTCLK_DLY(x) (((x) >> 29) & 0x7) /* v4 only */
#define VDCTRL4_SYNC_SIGNALS_ON (1 << 18)
#define SET_DOTCLK_H_VALID_DATA_CNT(x) ((x) & 0x3ffff)
#define DEBUG0_HSYNC (1 < 26)
#define DEBUG0_VSYNC (1 < 25)
#define MIN_XRES 120
#define MIN_YRES 120
#define RED 0
#define GREEN 1
#define BLUE 2
#define TRANSP 3
#define STMLCDIF_8BIT 1 /** pixel data bus to the display is of 8 bit width */
#define STMLCDIF_16BIT 0 /** pixel data bus to the display is of 16 bit width */
#define STMLCDIF_18BIT 2 /** pixel data bus to the display is of 18 bit width */
#define STMLCDIF_24BIT 3 /** pixel data bus to the display is of 24 bit width */
#define MXSFB_SYNC_DATA_ENABLE_HIGH_ACT (1 << 6)
#define MXSFB_SYNC_DOTCLK_FALLING_ACT (1 << 7) /* negative edge sampling */
enum mxsfb_devtype {
MXSFB_V3,
MXSFB_V4,
};
/* CPU dependent register offsets */
struct mxsfb_devdata {
unsigned transfer_count;
unsigned cur_buf;
unsigned next_buf;
unsigned debug0;
unsigned hs_wdth_mask;
unsigned hs_wdth_shift;
unsigned ipversion;
};
struct mxsfb_info {
struct platform_device *pdev;
struct clk *clk;
struct clk *clk_axi;
struct clk *clk_disp_axi;
void __iomem *base; /* registers */
unsigned allocated_size;
int enabled;
unsigned ld_intf_width;
unsigned dotclk_delay;
const struct mxsfb_devdata *devdata;
u32 sync;
struct regulator *reg_lcd;
};
#define mxsfb_is_v3(host) (host->devdata->ipversion == 3)
#define mxsfb_is_v4(host) (host->devdata->ipversion == 4)
static const struct mxsfb_devdata mxsfb_devdata[] = {
[MXSFB_V3] = {
.transfer_count = LCDC_V3_TRANSFER_COUNT,
.cur_buf = LCDC_V3_CUR_BUF,
.next_buf = LCDC_V3_NEXT_BUF,
.debug0 = LCDC_V3_DEBUG0,
.hs_wdth_mask = 0xff,
.hs_wdth_shift = 24,
.ipversion = 3,
},
[MXSFB_V4] = {
.transfer_count = LCDC_V4_TRANSFER_COUNT,
.cur_buf = LCDC_V4_CUR_BUF,
.next_buf = LCDC_V4_NEXT_BUF,
.debug0 = LCDC_V4_DEBUG0,
.hs_wdth_mask = 0x3fff,
.hs_wdth_shift = 18,
.ipversion = 4,
},
};
/* mask and shift depends on architecture */
static inline u32 set_hsync_pulse_width(struct mxsfb_info *host, unsigned val)
{
return (val & host->devdata->hs_wdth_mask) <<
host->devdata->hs_wdth_shift;
}
static inline u32 get_hsync_pulse_width(struct mxsfb_info *host, unsigned val)
{
return (val >> host->devdata->hs_wdth_shift) &
host->devdata->hs_wdth_mask;
}
static const struct fb_bitfield def_rgb565[] = {
[RED] = {
.offset = 11,
.length = 5,
},
[GREEN] = {
.offset = 5,
.length = 6,
},
[BLUE] = {
.offset = 0,
.length = 5,
},
[TRANSP] = { /* no support for transparency */
.length = 0,
}
};
static const struct fb_bitfield def_rgb888[] = {
[RED] = {
.offset = 16,
.length = 8,
},
[GREEN] = {
.offset = 8,
.length = 8,
},
[BLUE] = {
.offset = 0,
.length = 8,
},
[TRANSP] = { /* no support for transparency */
.length = 0,
}
};
static inline unsigned chan_to_field(unsigned chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
static int mxsfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *fb_info)
{
struct mxsfb_info *host = fb_info->par;
const struct fb_bitfield *rgb = NULL;
if (var->xres < MIN_XRES)
var->xres = MIN_XRES;
if (var->yres < MIN_YRES)
var->yres = MIN_YRES;
var->xres_virtual = var->xres;
var->yres_virtual = var->yres;
switch (var->bits_per_pixel) {
case 16:
/* always expect RGB 565 */
rgb = def_rgb565;
break;
case 32:
switch (host->ld_intf_width) {
case STMLCDIF_8BIT:
pr_debug("Unsupported LCD bus width mapping\n");
break;
case STMLCDIF_16BIT:
case STMLCDIF_18BIT:
case STMLCDIF_24BIT:
/* real 24 bit */
rgb = def_rgb888;
break;
}
break;
default:
pr_err("Unsupported colour depth: %u\n", var->bits_per_pixel);
return -EINVAL;
}
/*
* Copy the RGB parameters for this display
* from the machine specific parameters.
*/
var->red = rgb[RED];
var->green = rgb[GREEN];
var->blue = rgb[BLUE];
var->transp = rgb[TRANSP];
return 0;
}
static inline void mxsfb_enable_axi_clk(struct mxsfb_info *host)
{
if (host->clk_axi)
clk_prepare_enable(host->clk_axi);
}
static inline void mxsfb_disable_axi_clk(struct mxsfb_info *host)
{
if (host->clk_axi)
clk_disable_unprepare(host->clk_axi);
}
static void mxsfb_enable_controller(struct fb_info *fb_info)
{
struct mxsfb_info *host = fb_info->par;
u32 reg;
int ret;
dev_dbg(&host->pdev->dev, "%s\n", __func__);
if (host->reg_lcd) {
ret = regulator_enable(host->reg_lcd);
if (ret) {
dev_err(&host->pdev->dev,
"lcd regulator enable failed: %d\n", ret);
return;
}
}
if (host->clk_disp_axi)
clk_prepare_enable(host->clk_disp_axi);
clk_prepare_enable(host->clk);
clk_set_rate(host->clk, PICOS2KHZ(fb_info->var.pixclock) * 1000U);
mxsfb_enable_axi_clk(host);
/* if it was disabled, re-enable the mode again */
writel(CTRL_DOTCLK_MODE, host->base + LCDC_CTRL + REG_SET);
/* enable the SYNC signals first, then the DMA engine */
reg = readl(host->base + LCDC_VDCTRL4);
reg |= VDCTRL4_SYNC_SIGNALS_ON;
writel(reg, host->base + LCDC_VDCTRL4);
writel(CTRL_RUN, host->base + LCDC_CTRL + REG_SET);
host->enabled = 1;
}
static void mxsfb_disable_controller(struct fb_info *fb_info)
{
struct mxsfb_info *host = fb_info->par;
unsigned loop;
u32 reg;
int ret;
dev_dbg(&host->pdev->dev, "%s\n", __func__);
/*
* Even if we disable the controller here, it will still continue
* until its FIFOs are running out of data
*/
writel(CTRL_DOTCLK_MODE, host->base + LCDC_CTRL + REG_CLR);
loop = 1000;
while (loop) {
reg = readl(host->base + LCDC_CTRL);
if (!(reg & CTRL_RUN))
break;
loop--;
}
reg = readl(host->base + LCDC_VDCTRL4);
writel(reg & ~VDCTRL4_SYNC_SIGNALS_ON, host->base + LCDC_VDCTRL4);
mxsfb_disable_axi_clk(host);
clk_disable_unprepare(host->clk);
if (host->clk_disp_axi)
clk_disable_unprepare(host->clk_disp_axi);
host->enabled = 0;
if (host->reg_lcd) {
ret = regulator_disable(host->reg_lcd);
if (ret)
dev_err(&host->pdev->dev,
"lcd regulator disable failed: %d\n", ret);
}
}
static int mxsfb_set_par(struct fb_info *fb_info)
{
struct mxsfb_info *host = fb_info->par;
u32 ctrl, vdctrl0, vdctrl4;
int line_size, fb_size;
int reenable = 0;
line_size = fb_info->var.xres * (fb_info->var.bits_per_pixel >> 3);
fb_size = fb_info->var.yres_virtual * line_size;
if (fb_size > fb_info->fix.smem_len)
return -ENOMEM;
fb_info->fix.line_length = line_size;
/*
* It seems, you can't re-program the controller if it is still running.
* This may lead into shifted pictures (FIFO issue?).
* So, first stop the controller and drain its FIFOs
*/
if (host->enabled) {
reenable = 1;
mxsfb_disable_controller(fb_info);
}
mxsfb_enable_axi_clk(host);
/* clear the FIFOs */
writel(CTRL1_FIFO_CLEAR, host->base + LCDC_CTRL1 + REG_SET);
ctrl = CTRL_BYPASS_COUNT | CTRL_MASTER |
CTRL_SET_BUS_WIDTH(host->ld_intf_width);
switch (fb_info->var.bits_per_pixel) {
case 16:
dev_dbg(&host->pdev->dev, "Setting up RGB565 mode\n");
ctrl |= CTRL_SET_WORD_LENGTH(0);
writel(CTRL1_SET_BYTE_PACKAGING(0xf), host->base + LCDC_CTRL1);
break;
case 32:
dev_dbg(&host->pdev->dev, "Setting up RGB888/666 mode\n");
ctrl |= CTRL_SET_WORD_LENGTH(3);
switch (host->ld_intf_width) {
case STMLCDIF_8BIT:
mxsfb_disable_axi_clk(host);
dev_err(&host->pdev->dev,
"Unsupported LCD bus width mapping\n");
return -EINVAL;
case STMLCDIF_16BIT:
case STMLCDIF_18BIT:
case STMLCDIF_24BIT:
/* real 24 bit */
break;
}
/* do not use packed pixels = one pixel per word instead */
writel(CTRL1_SET_BYTE_PACKAGING(0x7), host->base + LCDC_CTRL1);
break;
default:
mxsfb_disable_axi_clk(host);
dev_err(&host->pdev->dev, "Unhandled color depth of %u\n",
fb_info->var.bits_per_pixel);
return -EINVAL;
}
writel(ctrl, host->base + LCDC_CTRL);
writel(TRANSFER_COUNT_SET_VCOUNT(fb_info->var.yres) |
TRANSFER_COUNT_SET_HCOUNT(fb_info->var.xres),
host->base + host->devdata->transfer_count);
vdctrl0 = VDCTRL0_ENABLE_PRESENT | /* always in DOTCLOCK mode */
VDCTRL0_VSYNC_PERIOD_UNIT |
VDCTRL0_VSYNC_PULSE_WIDTH_UNIT |
VDCTRL0_SET_VSYNC_PULSE_WIDTH(fb_info->var.vsync_len);
if (fb_info->var.sync & FB_SYNC_HOR_HIGH_ACT)
vdctrl0 |= VDCTRL0_HSYNC_ACT_HIGH;
if (fb_info->var.sync & FB_SYNC_VERT_HIGH_ACT)
vdctrl0 |= VDCTRL0_VSYNC_ACT_HIGH;
if (host->sync & MXSFB_SYNC_DATA_ENABLE_HIGH_ACT)
vdctrl0 |= VDCTRL0_ENABLE_ACT_HIGH;
if (host->sync & MXSFB_SYNC_DOTCLK_FALLING_ACT)
vdctrl0 |= VDCTRL0_DOTCLK_ACT_FALLING;
writel(vdctrl0, host->base + LCDC_VDCTRL0);
/* frame length in lines */
writel(fb_info->var.upper_margin + fb_info->var.vsync_len +
fb_info->var.lower_margin + fb_info->var.yres,
host->base + LCDC_VDCTRL1);
/* line length in units of clocks or pixels */
writel(set_hsync_pulse_width(host, fb_info->var.hsync_len) |
VDCTRL2_SET_HSYNC_PERIOD(fb_info->var.left_margin +
fb_info->var.hsync_len + fb_info->var.right_margin +
fb_info->var.xres),
host->base + LCDC_VDCTRL2);
writel(SET_HOR_WAIT_CNT(fb_info->var.left_margin +
fb_info->var.hsync_len) |
SET_VERT_WAIT_CNT(fb_info->var.upper_margin +
fb_info->var.vsync_len),
host->base + LCDC_VDCTRL3);
vdctrl4 = SET_DOTCLK_H_VALID_DATA_CNT(fb_info->var.xres);
if (mxsfb_is_v4(host))
vdctrl4 |= VDCTRL4_SET_DOTCLK_DLY(host->dotclk_delay);
writel(vdctrl4, host->base + LCDC_VDCTRL4);
writel(fb_info->fix.smem_start +
fb_info->fix.line_length * fb_info->var.yoffset,
host->base + host->devdata->next_buf);
mxsfb_disable_axi_clk(host);
if (reenable)
mxsfb_enable_controller(fb_info);
return 0;
}
static int mxsfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *fb_info)
{
unsigned int val;
int ret = -EINVAL;
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no matter what visual we are using.
*/
if (fb_info->var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fb_info->fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 12 or 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno < 16) {
u32 *pal = fb_info->pseudo_palette;
val = chan_to_field(red, &fb_info->var.red);
val |= chan_to_field(green, &fb_info->var.green);
val |= chan_to_field(blue, &fb_info->var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
break;
}
return ret;
}
static int mxsfb_blank(int blank, struct fb_info *fb_info)
{
struct mxsfb_info *host = fb_info->par;
switch (blank) {
case FB_BLANK_POWERDOWN:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_NORMAL:
if (host->enabled)
mxsfb_disable_controller(fb_info);
break;
case FB_BLANK_UNBLANK:
if (!host->enabled)
mxsfb_enable_controller(fb_info);
break;
}
return 0;
}
static int mxsfb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *fb_info)
{
struct mxsfb_info *host = fb_info->par;
unsigned offset;
if (var->xoffset != 0)
return -EINVAL;
offset = fb_info->fix.line_length * var->yoffset;
mxsfb_enable_axi_clk(host);
/* update on next VSYNC */
writel(fb_info->fix.smem_start + offset,
host->base + host->devdata->next_buf);
mxsfb_disable_axi_clk(host);
return 0;
}
static struct fb_ops mxsfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = mxsfb_check_var,
.fb_set_par = mxsfb_set_par,
.fb_setcolreg = mxsfb_setcolreg,
.fb_blank = mxsfb_blank,
.fb_pan_display = mxsfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
static int mxsfb_restore_mode(struct fb_info *fb_info,
struct fb_videomode *vmode)
{
struct mxsfb_info *host = fb_info->par;
unsigned line_count;
unsigned period;
unsigned long pa, fbsize;
int bits_per_pixel, ofs, ret = 0;
u32 transfer_count, vdctrl0, vdctrl2, vdctrl3, vdctrl4, ctrl;
mxsfb_enable_axi_clk(host);
/* Only restore the mode when the controller is running */
ctrl = readl(host->base + LCDC_CTRL);
if (!(ctrl & CTRL_RUN)) {
ret = -EINVAL;
goto err;
}
vdctrl0 = readl(host->base + LCDC_VDCTRL0);
vdctrl2 = readl(host->base + LCDC_VDCTRL2);
vdctrl3 = readl(host->base + LCDC_VDCTRL3);
vdctrl4 = readl(host->base + LCDC_VDCTRL4);
transfer_count = readl(host->base + host->devdata->transfer_count);
vmode->xres = TRANSFER_COUNT_GET_HCOUNT(transfer_count);
vmode->yres = TRANSFER_COUNT_GET_VCOUNT(transfer_count);
switch (CTRL_GET_WORD_LENGTH(ctrl)) {
case 0:
bits_per_pixel = 16;
break;
case 3:
bits_per_pixel = 32;
break;
case 1:
default:
ret = -EINVAL;
goto err;
}
fb_info->var.bits_per_pixel = bits_per_pixel;
vmode->pixclock = KHZ2PICOS(clk_get_rate(host->clk) / 1000U);
vmode->hsync_len = get_hsync_pulse_width(host, vdctrl2);
vmode->left_margin = GET_HOR_WAIT_CNT(vdctrl3) - vmode->hsync_len;
vmode->right_margin = VDCTRL2_GET_HSYNC_PERIOD(vdctrl2) -
vmode->hsync_len - vmode->left_margin - vmode->xres;
vmode->vsync_len = VDCTRL0_GET_VSYNC_PULSE_WIDTH(vdctrl0);
period = readl(host->base + LCDC_VDCTRL1);
vmode->upper_margin = GET_VERT_WAIT_CNT(vdctrl3) - vmode->vsync_len;
vmode->lower_margin = period - vmode->vsync_len -
vmode->upper_margin - vmode->yres;
vmode->vmode = FB_VMODE_NONINTERLACED;
vmode->sync = 0;
if (vdctrl0 & VDCTRL0_HSYNC_ACT_HIGH)
vmode->sync |= FB_SYNC_HOR_HIGH_ACT;
if (vdctrl0 & VDCTRL0_VSYNC_ACT_HIGH)
vmode->sync |= FB_SYNC_VERT_HIGH_ACT;
pr_debug("Reconstructed video mode:\n");
pr_debug("%dx%d, hsync: %u left: %u, right: %u, vsync: %u, upper: %u, lower: %u\n",
vmode->xres, vmode->yres, vmode->hsync_len, vmode->left_margin,
vmode->right_margin, vmode->vsync_len, vmode->upper_margin,
vmode->lower_margin);
pr_debug("pixclk: %ldkHz\n", PICOS2KHZ(vmode->pixclock));
host->ld_intf_width = CTRL_GET_BUS_WIDTH(ctrl);
host->dotclk_delay = VDCTRL4_GET_DOTCLK_DLY(vdctrl4);
fb_info->fix.line_length = vmode->xres * (bits_per_pixel >> 3);
pa = readl(host->base + host->devdata->cur_buf);
fbsize = fb_info->fix.line_length * vmode->yres;
if (pa < fb_info->fix.smem_start) {
ret = -EINVAL;
goto err;
}
if (pa + fbsize > fb_info->fix.smem_start + fb_info->fix.smem_len) {
ret = -EINVAL;
goto err;
}
ofs = pa - fb_info->fix.smem_start;
if (ofs) {
memmove(fb_info->screen_base, fb_info->screen_base + ofs, fbsize);
writel(fb_info->fix.smem_start, host->base + host->devdata->next_buf);
}
line_count = fb_info->fix.smem_len / fb_info->fix.line_length;
fb_info->fix.ypanstep = 1;
clk_prepare_enable(host->clk);
host->enabled = 1;
err:
if (ret)
mxsfb_disable_axi_clk(host);
return ret;
}
static int mxsfb_init_fbinfo_dt(struct fb_info *fb_info,
struct fb_videomode *vmode)
{
struct mxsfb_info *host = fb_info->par;
struct fb_var_screeninfo *var = &fb_info->var;
struct device *dev = &host->pdev->dev;
struct device_node *np = host->pdev->dev.of_node;
struct device_node *display_np;
struct videomode vm;
u32 width;
int ret;
display_np = of_parse_phandle(np, "display", 0);
if (!display_np) {
dev_err(dev, "failed to find display phandle\n");
return -ENOENT;
}
ret = of_property_read_u32(display_np, "bus-width", &width);
if (ret < 0) {
dev_err(dev, "failed to get property bus-width\n");
goto put_display_node;
}
switch (width) {
case 8:
host->ld_intf_width = STMLCDIF_8BIT;
break;
case 16:
host->ld_intf_width = STMLCDIF_16BIT;
break;
case 18:
host->ld_intf_width = STMLCDIF_18BIT;
break;
case 24:
host->ld_intf_width = STMLCDIF_24BIT;
break;
default:
dev_err(dev, "invalid bus-width value\n");
ret = -EINVAL;
goto put_display_node;
}
ret = of_property_read_u32(display_np, "bits-per-pixel",
&var->bits_per_pixel);
if (ret < 0) {
dev_err(dev, "failed to get property bits-per-pixel\n");
goto put_display_node;
}
ret = of_get_videomode(display_np, &vm, OF_USE_NATIVE_MODE);
if (ret) {
dev_err(dev, "failed to get videomode from DT\n");
goto put_display_node;
}
ret = fb_videomode_from_videomode(&vm, vmode);
if (ret < 0)
goto put_display_node;
if (vm.flags & DISPLAY_FLAGS_DE_HIGH)
host->sync |= MXSFB_SYNC_DATA_ENABLE_HIGH_ACT;
/*
* The PIXDATA flags of the display_flags enum are controller
* centric, e.g. NEGEDGE means drive data on negative edge.
* However, the drivers flag is display centric: Sample the
* data on negative (falling) edge. Therefore, check for the
* POSEDGE flag:
* drive on positive edge => sample on negative edge
*/
if (vm.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)
host->sync |= MXSFB_SYNC_DOTCLK_FALLING_ACT;
put_display_node:
of_node_put(display_np);
return ret;
}
static int mxsfb_init_fbinfo(struct fb_info *fb_info,
struct fb_videomode *vmode)
{
int ret;
struct mxsfb_info *host = fb_info->par;
struct device *dev = &host->pdev->dev;
struct fb_var_screeninfo *var = &fb_info->var;
dma_addr_t fb_phys;
void *fb_virt;
unsigned fb_size;
fb_info->fbops = &mxsfb_ops;
fb_info->flags = FBINFO_FLAG_DEFAULT | FBINFO_READS_FAST;
strlcpy(fb_info->fix.id, "mxs", sizeof(fb_info->fix.id));
fb_info->fix.type = FB_TYPE_PACKED_PIXELS;
fb_info->fix.ypanstep = 1;
fb_info->fix.visual = FB_VISUAL_TRUECOLOR,
fb_info->fix.accel = FB_ACCEL_NONE;
ret = mxsfb_init_fbinfo_dt(fb_info, vmode);
if (ret)
return ret;
var->nonstd = 0;
var->activate = FB_ACTIVATE_NOW;
var->accel_flags = 0;
var->vmode = FB_VMODE_NONINTERLACED;
/* Memory allocation for framebuffer */
fb_size = SZ_2M;
fb_virt = dma_alloc_wc(dev, PAGE_ALIGN(fb_size), &fb_phys, GFP_KERNEL);
if (!fb_virt)
return -ENOMEM;
fb_info->fix.smem_start = fb_phys;
fb_info->screen_base = fb_virt;
fb_info->screen_size = fb_info->fix.smem_len = fb_size;
if (mxsfb_restore_mode(fb_info, vmode))
memset(fb_virt, 0, fb_size);
return 0;
}
static void mxsfb_free_videomem(struct fb_info *fb_info)
{
struct mxsfb_info *host = fb_info->par;
struct device *dev = &host->pdev->dev;
dma_free_wc(dev, fb_info->screen_size, fb_info->screen_base,
fb_info->fix.smem_start);
}
static const struct platform_device_id mxsfb_devtype[] = {
{
.name = "imx23-fb",
.driver_data = MXSFB_V3,
}, {
.name = "imx28-fb",
.driver_data = MXSFB_V4,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, mxsfb_devtype);
static const struct of_device_id mxsfb_dt_ids[] = {
{ .compatible = "fsl,imx23-lcdif", .data = &mxsfb_devtype[0], },
{ .compatible = "fsl,imx28-lcdif", .data = &mxsfb_devtype[1], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxsfb_dt_ids);
static int mxsfb_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(mxsfb_dt_ids, &pdev->dev);
struct resource *res;
struct mxsfb_info *host;
struct fb_info *fb_info;
struct fb_videomode *mode;
int ret;
if (of_id)
pdev->id_entry = of_id->data;
fb_info = framebuffer_alloc(sizeof(struct mxsfb_info), &pdev->dev);
if (!fb_info) {
dev_err(&pdev->dev, "Failed to allocate fbdev\n");
return -ENOMEM;
}
mode = devm_kzalloc(&pdev->dev, sizeof(struct fb_videomode),
GFP_KERNEL);
if (mode == NULL)
return -ENOMEM;
host = fb_info->par;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto fb_release;
}
host->pdev = pdev;
platform_set_drvdata(pdev, host);
host->devdata = &mxsfb_devdata[pdev->id_entry->driver_data];
host->clk = devm_clk_get(&host->pdev->dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
goto fb_release;
}
host->clk_axi = devm_clk_get(&host->pdev->dev, "axi");
if (IS_ERR(host->clk_axi))
host->clk_axi = NULL;
host->clk_disp_axi = devm_clk_get(&host->pdev->dev, "disp_axi");
if (IS_ERR(host->clk_disp_axi))
host->clk_disp_axi = NULL;
host->reg_lcd = devm_regulator_get(&pdev->dev, "lcd");
if (IS_ERR(host->reg_lcd))
host->reg_lcd = NULL;
fb_info->pseudo_palette = devm_kcalloc(&pdev->dev, 16, sizeof(u32),
GFP_KERNEL);
if (!fb_info->pseudo_palette) {
ret = -ENOMEM;
goto fb_release;
}
ret = mxsfb_init_fbinfo(fb_info, mode);
if (ret != 0)
goto fb_release;
fb_videomode_to_var(&fb_info->var, mode);
/* init the color fields */
mxsfb_check_var(&fb_info->var, fb_info);
platform_set_drvdata(pdev, fb_info);
ret = register_framebuffer(fb_info);
if (ret != 0) {
dev_err(&pdev->dev,"Failed to register framebuffer\n");
goto fb_destroy;
}
if (!host->enabled) {
mxsfb_enable_axi_clk(host);
writel(0, host->base + LCDC_CTRL);
mxsfb_disable_axi_clk(host);
mxsfb_set_par(fb_info);
mxsfb_enable_controller(fb_info);
}
dev_info(&pdev->dev, "initialized\n");
return 0;
fb_destroy:
if (host->enabled)
clk_disable_unprepare(host->clk);
fb_release:
framebuffer_release(fb_info);
return ret;
}
static int mxsfb_remove(struct platform_device *pdev)
{
struct fb_info *fb_info = platform_get_drvdata(pdev);
struct mxsfb_info *host = fb_info->par;
if (host->enabled)
mxsfb_disable_controller(fb_info);
unregister_framebuffer(fb_info);
mxsfb_free_videomem(fb_info);
framebuffer_release(fb_info);
return 0;
}
static void mxsfb_shutdown(struct platform_device *pdev)
{
struct fb_info *fb_info = platform_get_drvdata(pdev);
struct mxsfb_info *host = fb_info->par;
mxsfb_enable_axi_clk(host);
/*
* Force stop the LCD controller as keeping it running during reboot
* might interfere with the BootROM's boot mode pads sampling.
*/
writel(CTRL_RUN, host->base + LCDC_CTRL + REG_CLR);
mxsfb_disable_axi_clk(host);
}
static struct platform_driver mxsfb_driver = {
.probe = mxsfb_probe,
.remove = mxsfb_remove,
.shutdown = mxsfb_shutdown,
.id_table = mxsfb_devtype,
.driver = {
.name = DRIVER_NAME,
.of_match_table = mxsfb_dt_ids,
},
};
module_platform_driver(mxsfb_driver);
MODULE_DESCRIPTION("Freescale mxs framebuffer driver");
MODULE_AUTHOR("Sascha Hauer, Pengutronix");
MODULE_LICENSE("GPL");