| /* |
| * Copyright (C) 2013 Freescale Semiconductor, Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpu_cooling.h> |
| #include <linux/err.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/pm_opp.h> |
| #include <linux/platform_device.h> |
| #include <linux/regulator/consumer.h> |
| |
| #define PU_SOC_VOLTAGE_NORMAL 1250000 |
| #define PU_SOC_VOLTAGE_HIGH 1275000 |
| #define FREQ_1P2_GHZ 1200000000 |
| |
| static struct regulator *arm_reg; |
| static struct regulator *pu_reg; |
| static struct regulator *soc_reg; |
| |
| enum IMX6_CPUFREQ_CLKS { |
| ARM, |
| PLL1_SYS, |
| STEP, |
| PLL1_SW, |
| PLL2_PFD2_396M, |
| /* MX6UL requires two more clks */ |
| PLL2_BUS, |
| SECONDARY_SEL, |
| }; |
| #define IMX6Q_CPUFREQ_CLK_NUM 5 |
| #define IMX6UL_CPUFREQ_CLK_NUM 7 |
| |
| static int num_clks; |
| static struct clk_bulk_data clks[] = { |
| { .id = "arm" }, |
| { .id = "pll1_sys" }, |
| { .id = "step" }, |
| { .id = "pll1_sw" }, |
| { .id = "pll2_pfd2_396m" }, |
| { .id = "pll2_bus" }, |
| { .id = "secondary_sel" }, |
| }; |
| |
| static struct device *cpu_dev; |
| static struct thermal_cooling_device *cdev; |
| static bool free_opp; |
| static struct cpufreq_frequency_table *freq_table; |
| static unsigned int max_freq; |
| static unsigned int transition_latency; |
| |
| static u32 *imx6_soc_volt; |
| static u32 soc_opp_count; |
| |
| static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index) |
| { |
| struct dev_pm_opp *opp; |
| unsigned long freq_hz, volt, volt_old; |
| unsigned int old_freq, new_freq; |
| bool pll1_sys_temp_enabled = false; |
| int ret; |
| |
| new_freq = freq_table[index].frequency; |
| freq_hz = new_freq * 1000; |
| old_freq = clk_get_rate(clks[ARM].clk) / 1000; |
| |
| opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); |
| if (IS_ERR(opp)) { |
| dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz); |
| return PTR_ERR(opp); |
| } |
| |
| volt = dev_pm_opp_get_voltage(opp); |
| dev_pm_opp_put(opp); |
| |
| volt_old = regulator_get_voltage(arm_reg); |
| |
| dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n", |
| old_freq / 1000, volt_old / 1000, |
| new_freq / 1000, volt / 1000); |
| |
| /* scaling up? scale voltage before frequency */ |
| if (new_freq > old_freq) { |
| if (!IS_ERR(pu_reg)) { |
| ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); |
| if (ret) { |
| dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret); |
| return ret; |
| } |
| } |
| ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); |
| if (ret) { |
| dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret); |
| return ret; |
| } |
| ret = regulator_set_voltage_tol(arm_reg, volt, 0); |
| if (ret) { |
| dev_err(cpu_dev, |
| "failed to scale vddarm up: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| /* |
| * The setpoints are selected per PLL/PDF frequencies, so we need to |
| * reprogram PLL for frequency scaling. The procedure of reprogramming |
| * PLL1 is as below. |
| * For i.MX6UL, it has a secondary clk mux, the cpu frequency change |
| * flow is slightly different from other i.MX6 OSC. |
| * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below: |
| * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it |
| * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it |
| * - Disable pll2_pfd2_396m_clk |
| */ |
| if (of_machine_is_compatible("fsl,imx6ul") || |
| of_machine_is_compatible("fsl,imx6ull")) { |
| /* |
| * When changing pll1_sw_clk's parent to pll1_sys_clk, |
| * CPU may run at higher than 528MHz, this will lead to |
| * the system unstable if the voltage is lower than the |
| * voltage of 528MHz, so lower the CPU frequency to one |
| * half before changing CPU frequency. |
| */ |
| clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000); |
| clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); |
| if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) |
| clk_set_parent(clks[SECONDARY_SEL].clk, |
| clks[PLL2_BUS].clk); |
| else |
| clk_set_parent(clks[SECONDARY_SEL].clk, |
| clks[PLL2_PFD2_396M].clk); |
| clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk); |
| clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); |
| if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) { |
| clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); |
| clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); |
| } |
| } else { |
| clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk); |
| clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk); |
| if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) { |
| clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000); |
| clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk); |
| } else { |
| /* pll1_sys needs to be enabled for divider rate change to work. */ |
| pll1_sys_temp_enabled = true; |
| clk_prepare_enable(clks[PLL1_SYS].clk); |
| } |
| } |
| |
| /* Ensure the arm clock divider is what we expect */ |
| ret = clk_set_rate(clks[ARM].clk, new_freq * 1000); |
| if (ret) { |
| dev_err(cpu_dev, "failed to set clock rate: %d\n", ret); |
| regulator_set_voltage_tol(arm_reg, volt_old, 0); |
| return ret; |
| } |
| |
| /* PLL1 is only needed until after ARM-PODF is set. */ |
| if (pll1_sys_temp_enabled) |
| clk_disable_unprepare(clks[PLL1_SYS].clk); |
| |
| /* scaling down? scale voltage after frequency */ |
| if (new_freq < old_freq) { |
| ret = regulator_set_voltage_tol(arm_reg, volt, 0); |
| if (ret) { |
| dev_warn(cpu_dev, |
| "failed to scale vddarm down: %d\n", ret); |
| ret = 0; |
| } |
| ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0); |
| if (ret) { |
| dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret); |
| ret = 0; |
| } |
| if (!IS_ERR(pu_reg)) { |
| ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0); |
| if (ret) { |
| dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret); |
| ret = 0; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void imx6q_cpufreq_ready(struct cpufreq_policy *policy) |
| { |
| cdev = of_cpufreq_cooling_register(policy); |
| |
| if (!cdev) |
| dev_err(cpu_dev, |
| "running cpufreq without cooling device: %ld\n", |
| PTR_ERR(cdev)); |
| } |
| |
| static int imx6q_cpufreq_init(struct cpufreq_policy *policy) |
| { |
| int ret; |
| |
| policy->clk = clks[ARM].clk; |
| ret = cpufreq_generic_init(policy, freq_table, transition_latency); |
| policy->suspend_freq = max_freq; |
| |
| return ret; |
| } |
| |
| static int imx6q_cpufreq_exit(struct cpufreq_policy *policy) |
| { |
| cpufreq_cooling_unregister(cdev); |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver imx6q_cpufreq_driver = { |
| .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
| .verify = cpufreq_generic_frequency_table_verify, |
| .target_index = imx6q_set_target, |
| .get = cpufreq_generic_get, |
| .init = imx6q_cpufreq_init, |
| .exit = imx6q_cpufreq_exit, |
| .name = "imx6q-cpufreq", |
| .ready = imx6q_cpufreq_ready, |
| .attr = cpufreq_generic_attr, |
| .suspend = cpufreq_generic_suspend, |
| }; |
| |
| #define OCOTP_CFG3 0x440 |
| #define OCOTP_CFG3_SPEED_SHIFT 16 |
| #define OCOTP_CFG3_SPEED_1P2GHZ 0x3 |
| #define OCOTP_CFG3_SPEED_996MHZ 0x2 |
| #define OCOTP_CFG3_SPEED_852MHZ 0x1 |
| |
| static void imx6q_opp_check_speed_grading(struct device *dev) |
| { |
| struct device_node *np; |
| void __iomem *base; |
| u32 val; |
| |
| np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp"); |
| if (!np) |
| return; |
| |
| base = of_iomap(np, 0); |
| if (!base) { |
| dev_err(dev, "failed to map ocotp\n"); |
| goto put_node; |
| } |
| |
| /* |
| * SPEED_GRADING[1:0] defines the max speed of ARM: |
| * 2b'11: 1200000000Hz; |
| * 2b'10: 996000000Hz; |
| * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz. |
| * 2b'00: 792000000Hz; |
| * We need to set the max speed of ARM according to fuse map. |
| */ |
| val = readl_relaxed(base + OCOTP_CFG3); |
| val >>= OCOTP_CFG3_SPEED_SHIFT; |
| val &= 0x3; |
| |
| if (val < OCOTP_CFG3_SPEED_996MHZ) |
| if (dev_pm_opp_disable(dev, 996000000)) |
| dev_warn(dev, "failed to disable 996MHz OPP\n"); |
| |
| if (of_machine_is_compatible("fsl,imx6q") || |
| of_machine_is_compatible("fsl,imx6qp")) { |
| if (val != OCOTP_CFG3_SPEED_852MHZ) |
| if (dev_pm_opp_disable(dev, 852000000)) |
| dev_warn(dev, "failed to disable 852MHz OPP\n"); |
| if (val != OCOTP_CFG3_SPEED_1P2GHZ) |
| if (dev_pm_opp_disable(dev, 1200000000)) |
| dev_warn(dev, "failed to disable 1.2GHz OPP\n"); |
| } |
| iounmap(base); |
| put_node: |
| of_node_put(np); |
| } |
| |
| #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2 |
| #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2 |
| #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3 |
| |
| static void imx6ul_opp_check_speed_grading(struct device *dev) |
| { |
| struct device_node *np; |
| void __iomem *base; |
| u32 val; |
| |
| np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp"); |
| if (!np) |
| return; |
| |
| base = of_iomap(np, 0); |
| if (!base) { |
| dev_err(dev, "failed to map ocotp\n"); |
| goto put_node; |
| } |
| |
| /* |
| * Speed GRADING[1:0] defines the max speed of ARM: |
| * 2b'00: Reserved; |
| * 2b'01: 528000000Hz; |
| * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL; |
| * 2b'11: 900000000Hz on i.MX6ULL only; |
| * We need to set the max speed of ARM according to fuse map. |
| */ |
| val = readl_relaxed(base + OCOTP_CFG3); |
| val >>= OCOTP_CFG3_SPEED_SHIFT; |
| val &= 0x3; |
| |
| if (of_machine_is_compatible("fsl,imx6ul")) { |
| if (val != OCOTP_CFG3_6UL_SPEED_696MHZ) |
| if (dev_pm_opp_disable(dev, 696000000)) |
| dev_warn(dev, "failed to disable 696MHz OPP\n"); |
| } |
| |
| if (of_machine_is_compatible("fsl,imx6ull")) { |
| if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ) |
| if (dev_pm_opp_disable(dev, 792000000)) |
| dev_warn(dev, "failed to disable 792MHz OPP\n"); |
| |
| if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ) |
| if (dev_pm_opp_disable(dev, 900000000)) |
| dev_warn(dev, "failed to disable 900MHz OPP\n"); |
| } |
| |
| iounmap(base); |
| put_node: |
| of_node_put(np); |
| } |
| |
| static int imx6q_cpufreq_probe(struct platform_device *pdev) |
| { |
| struct device_node *np; |
| struct dev_pm_opp *opp; |
| unsigned long min_volt, max_volt; |
| int num, ret; |
| const struct property *prop; |
| const __be32 *val; |
| u32 nr, i, j; |
| |
| cpu_dev = get_cpu_device(0); |
| if (!cpu_dev) { |
| pr_err("failed to get cpu0 device\n"); |
| return -ENODEV; |
| } |
| |
| np = of_node_get(cpu_dev->of_node); |
| if (!np) { |
| dev_err(cpu_dev, "failed to find cpu0 node\n"); |
| return -ENOENT; |
| } |
| |
| if (of_machine_is_compatible("fsl,imx6ul") || |
| of_machine_is_compatible("fsl,imx6ull")) |
| num_clks = IMX6UL_CPUFREQ_CLK_NUM; |
| else |
| num_clks = IMX6Q_CPUFREQ_CLK_NUM; |
| |
| ret = clk_bulk_get(cpu_dev, num_clks, clks); |
| if (ret) |
| goto put_node; |
| |
| arm_reg = regulator_get(cpu_dev, "arm"); |
| pu_reg = regulator_get_optional(cpu_dev, "pu"); |
| soc_reg = regulator_get(cpu_dev, "soc"); |
| if (PTR_ERR(arm_reg) == -EPROBE_DEFER || |
| PTR_ERR(soc_reg) == -EPROBE_DEFER || |
| PTR_ERR(pu_reg) == -EPROBE_DEFER) { |
| ret = -EPROBE_DEFER; |
| dev_dbg(cpu_dev, "regulators not ready, defer\n"); |
| goto put_reg; |
| } |
| if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) { |
| dev_err(cpu_dev, "failed to get regulators\n"); |
| ret = -ENOENT; |
| goto put_reg; |
| } |
| |
| ret = dev_pm_opp_of_add_table(cpu_dev); |
| if (ret < 0) { |
| dev_err(cpu_dev, "failed to init OPP table: %d\n", ret); |
| goto put_reg; |
| } |
| |
| if (of_machine_is_compatible("fsl,imx6ul") || |
| of_machine_is_compatible("fsl,imx6ull")) |
| imx6ul_opp_check_speed_grading(cpu_dev); |
| else |
| imx6q_opp_check_speed_grading(cpu_dev); |
| |
| /* Because we have added the OPPs here, we must free them */ |
| free_opp = true; |
| num = dev_pm_opp_get_opp_count(cpu_dev); |
| if (num < 0) { |
| ret = num; |
| dev_err(cpu_dev, "no OPP table is found: %d\n", ret); |
| goto out_free_opp; |
| } |
| |
| ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table); |
| if (ret) { |
| dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret); |
| goto out_free_opp; |
| } |
| |
| /* Make imx6_soc_volt array's size same as arm opp number */ |
| imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt), |
| GFP_KERNEL); |
| if (imx6_soc_volt == NULL) { |
| ret = -ENOMEM; |
| goto free_freq_table; |
| } |
| |
| prop = of_find_property(np, "fsl,soc-operating-points", NULL); |
| if (!prop || !prop->value) |
| goto soc_opp_out; |
| |
| /* |
| * Each OPP is a set of tuples consisting of frequency and |
| * voltage like <freq-kHz vol-uV>. |
| */ |
| nr = prop->length / sizeof(u32); |
| if (nr % 2 || (nr / 2) < num) |
| goto soc_opp_out; |
| |
| for (j = 0; j < num; j++) { |
| val = prop->value; |
| for (i = 0; i < nr / 2; i++) { |
| unsigned long freq = be32_to_cpup(val++); |
| unsigned long volt = be32_to_cpup(val++); |
| if (freq_table[j].frequency == freq) { |
| imx6_soc_volt[soc_opp_count++] = volt; |
| break; |
| } |
| } |
| } |
| |
| soc_opp_out: |
| /* use fixed soc opp volt if no valid soc opp info found in dtb */ |
| if (soc_opp_count != num) { |
| dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n"); |
| for (j = 0; j < num; j++) |
| imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL; |
| if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ) |
| imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH; |
| } |
| |
| if (of_property_read_u32(np, "clock-latency", &transition_latency)) |
| transition_latency = CPUFREQ_ETERNAL; |
| |
| /* |
| * Calculate the ramp time for max voltage change in the |
| * VDDSOC and VDDPU regulators. |
| */ |
| ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); |
| if (ret > 0) |
| transition_latency += ret * 1000; |
| if (!IS_ERR(pu_reg)) { |
| ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]); |
| if (ret > 0) |
| transition_latency += ret * 1000; |
| } |
| |
| /* |
| * OPP is maintained in order of increasing frequency, and |
| * freq_table initialised from OPP is therefore sorted in the |
| * same order. |
| */ |
| max_freq = freq_table[--num].frequency; |
| opp = dev_pm_opp_find_freq_exact(cpu_dev, |
| freq_table[0].frequency * 1000, true); |
| min_volt = dev_pm_opp_get_voltage(opp); |
| dev_pm_opp_put(opp); |
| opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true); |
| max_volt = dev_pm_opp_get_voltage(opp); |
| dev_pm_opp_put(opp); |
| |
| ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt); |
| if (ret > 0) |
| transition_latency += ret * 1000; |
| |
| ret = cpufreq_register_driver(&imx6q_cpufreq_driver); |
| if (ret) { |
| dev_err(cpu_dev, "failed register driver: %d\n", ret); |
| goto free_freq_table; |
| } |
| |
| of_node_put(np); |
| return 0; |
| |
| free_freq_table: |
| dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); |
| out_free_opp: |
| if (free_opp) |
| dev_pm_opp_of_remove_table(cpu_dev); |
| put_reg: |
| if (!IS_ERR(arm_reg)) |
| regulator_put(arm_reg); |
| if (!IS_ERR(pu_reg)) |
| regulator_put(pu_reg); |
| if (!IS_ERR(soc_reg)) |
| regulator_put(soc_reg); |
| |
| clk_bulk_put(num_clks, clks); |
| put_node: |
| of_node_put(np); |
| |
| return ret; |
| } |
| |
| static int imx6q_cpufreq_remove(struct platform_device *pdev) |
| { |
| cpufreq_unregister_driver(&imx6q_cpufreq_driver); |
| dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table); |
| if (free_opp) |
| dev_pm_opp_of_remove_table(cpu_dev); |
| regulator_put(arm_reg); |
| if (!IS_ERR(pu_reg)) |
| regulator_put(pu_reg); |
| regulator_put(soc_reg); |
| |
| clk_bulk_put(num_clks, clks); |
| |
| return 0; |
| } |
| |
| static struct platform_driver imx6q_cpufreq_platdrv = { |
| .driver = { |
| .name = "imx6q-cpufreq", |
| }, |
| .probe = imx6q_cpufreq_probe, |
| .remove = imx6q_cpufreq_remove, |
| }; |
| module_platform_driver(imx6q_cpufreq_platdrv); |
| |
| MODULE_ALIAS("platform:imx6q-cpufreq"); |
| MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>"); |
| MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver"); |
| MODULE_LICENSE("GPL"); |