| /* IEEE754 floating point arithmetic |
| * double precision square root |
| */ |
| /* |
| * MIPS floating point support |
| * Copyright (C) 1994-2000 Algorithmics Ltd. |
| * |
| * ######################################################################## |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * ######################################################################## |
| */ |
| |
| |
| #include "ieee754dp.h" |
| |
| static const unsigned table[] = { |
| 0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, |
| 29598, 36145, 43202, 50740, 58733, 67158, 75992, |
| 85215, 83599, 71378, 60428, 50647, 41945, 34246, |
| 27478, 21581, 16499, 12183, 8588, 5674, 3403, |
| 1742, 661, 130 |
| }; |
| |
| union ieee754dp ieee754dp_sqrt(union ieee754dp x) |
| { |
| struct _ieee754_csr oldcsr; |
| union ieee754dp y, z, t; |
| unsigned scalx, yh; |
| COMPXDP; |
| |
| EXPLODEXDP; |
| CLEARCX; |
| FLUSHXDP; |
| |
| /* x == INF or NAN? */ |
| switch (xc) { |
| case IEEE754_CLASS_QNAN: |
| /* sqrt(Nan) = Nan */ |
| return ieee754dp_nanxcpt(x, "sqrt"); |
| case IEEE754_CLASS_SNAN: |
| SETCX(IEEE754_INVALID_OPERATION); |
| return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt"); |
| case IEEE754_CLASS_ZERO: |
| /* sqrt(0) = 0 */ |
| return x; |
| case IEEE754_CLASS_INF: |
| if (xs) { |
| /* sqrt(-Inf) = Nan */ |
| SETCX(IEEE754_INVALID_OPERATION); |
| return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt"); |
| } |
| /* sqrt(+Inf) = Inf */ |
| return x; |
| case IEEE754_CLASS_DNORM: |
| DPDNORMX; |
| /* fall through */ |
| case IEEE754_CLASS_NORM: |
| if (xs) { |
| /* sqrt(-x) = Nan */ |
| SETCX(IEEE754_INVALID_OPERATION); |
| return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt"); |
| } |
| break; |
| } |
| |
| /* save old csr; switch off INX enable & flag; set RN rounding */ |
| oldcsr = ieee754_csr; |
| ieee754_csr.mx &= ~IEEE754_INEXACT; |
| ieee754_csr.sx &= ~IEEE754_INEXACT; |
| ieee754_csr.rm = IEEE754_RN; |
| |
| /* adjust exponent to prevent overflow */ |
| scalx = 0; |
| if (xe > 512) { /* x > 2**-512? */ |
| xe -= 512; /* x = x / 2**512 */ |
| scalx += 256; |
| } else if (xe < -512) { /* x < 2**-512? */ |
| xe += 512; /* x = x * 2**512 */ |
| scalx -= 256; |
| } |
| |
| y = x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT); |
| |
| /* magic initial approximation to almost 8 sig. bits */ |
| yh = y.bits >> 32; |
| yh = (yh >> 1) + 0x1ff80000; |
| yh = yh - table[(yh >> 15) & 31]; |
| y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff); |
| |
| /* Heron's rule once with correction to improve to ~18 sig. bits */ |
| /* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */ |
| t = ieee754dp_div(x, y); |
| y = ieee754dp_add(y, t); |
| y.bits -= 0x0010000600000000LL; |
| y.bits &= 0xffffffff00000000LL; |
| |
| /* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */ |
| /* t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */ |
| z = t = ieee754dp_mul(y, y); |
| t.parts.bexp += 0x001; |
| t = ieee754dp_add(t, z); |
| z = ieee754dp_mul(ieee754dp_sub(x, z), y); |
| |
| /* t=z/(t+x) ; pt[n0]+=0x00100000; y+=t; */ |
| t = ieee754dp_div(z, ieee754dp_add(t, x)); |
| t.parts.bexp += 0x001; |
| y = ieee754dp_add(y, t); |
| |
| /* twiddle last bit to force y correctly rounded */ |
| |
| /* set RZ, clear INEX flag */ |
| ieee754_csr.rm = IEEE754_RZ; |
| ieee754_csr.sx &= ~IEEE754_INEXACT; |
| |
| /* t=x/y; ...chopped quotient, possibly inexact */ |
| t = ieee754dp_div(x, y); |
| |
| if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) { |
| |
| if (!(ieee754_csr.sx & IEEE754_INEXACT)) |
| /* t = t-ulp */ |
| t.bits -= 1; |
| |
| /* add inexact to result status */ |
| oldcsr.cx |= IEEE754_INEXACT; |
| oldcsr.sx |= IEEE754_INEXACT; |
| |
| switch (oldcsr.rm) { |
| case IEEE754_RP: |
| y.bits += 1; |
| /* drop through */ |
| case IEEE754_RN: |
| t.bits += 1; |
| break; |
| } |
| |
| /* y=y+t; ...chopped sum */ |
| y = ieee754dp_add(y, t); |
| |
| /* adjust scalx for correctly rounded sqrt(x) */ |
| scalx -= 1; |
| } |
| |
| /* py[n0]=py[n0]+scalx; ...scale back y */ |
| y.parts.bexp += scalx; |
| |
| /* restore rounding mode, possibly set inexact */ |
| ieee754_csr = oldcsr; |
| |
| return y; |
| } |