sched: Clean up and harmonize the coding style of the scheduler code base

A good number of small style inconsistencies have accumulated
in the scheduler core, so do a pass over them to harmonize
all these details:

 - fix speling in comments,

 - use curly braces for multi-line statements,

 - remove unnecessary parentheses from integer literals,

 - capitalize consistently,

 - remove stray newlines,

 - add comments where necessary,

 - remove invalid/unnecessary comments,

 - align structure definitions and other data types vertically,

 - add missing newlines for increased readability,

 - fix vertical tabulation where it's misaligned,

 - harmonize preprocessor conditional block labeling
   and vertical alignment,

 - remove line-breaks where they uglify the code,

 - add newline after local variable definitions,

No change in functionality:

  md5:
     1191fa0a890cfa8132156d2959d7e9e2  built-in.o.before.asm
     1191fa0a890cfa8132156d2959d7e9e2  built-in.o.after.asm

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
diff --git a/kernel/sched/autogroup.c b/kernel/sched/autogroup.c
index bb4b9fe..ff1b7b6 100644
--- a/kernel/sched/autogroup.c
+++ b/kernel/sched/autogroup.c
@@ -168,18 +168,19 @@ autogroup_move_group(struct task_struct *p, struct autogroup *ag)
 	autogroup_kref_put(prev);
 }
 
-/* Allocates GFP_KERNEL, cannot be called under any spinlock */
+/* Allocates GFP_KERNEL, cannot be called under any spinlock: */
 void sched_autogroup_create_attach(struct task_struct *p)
 {
 	struct autogroup *ag = autogroup_create();
 
 	autogroup_move_group(p, ag);
-	/* drop extra reference added by autogroup_create() */
+
+	/* Drop extra reference added by autogroup_create(): */
 	autogroup_kref_put(ag);
 }
 EXPORT_SYMBOL(sched_autogroup_create_attach);
 
-/* Cannot be called under siglock.  Currently has no users */
+/* Cannot be called under siglock. Currently has no users: */
 void sched_autogroup_detach(struct task_struct *p)
 {
 	autogroup_move_group(p, &autogroup_default);
@@ -202,7 +203,6 @@ static int __init setup_autogroup(char *str)
 
 	return 1;
 }
-
 __setup("noautogroup", setup_autogroup);
 
 #ifdef CONFIG_PROC_FS
@@ -224,7 +224,7 @@ int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
 	if (nice < 0 && !can_nice(current, nice))
 		return -EPERM;
 
-	/* this is a heavy operation taking global locks.. */
+	/* This is a heavy operation, taking global locks.. */
 	if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next))
 		return -EAGAIN;
 
@@ -267,4 +267,4 @@ int autogroup_path(struct task_group *tg, char *buf, int buflen)
 
 	return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);
 }
-#endif /* CONFIG_SCHED_DEBUG */
+#endif
diff --git a/kernel/sched/autogroup.h b/kernel/sched/autogroup.h
index 27cd22b..49e6ec9 100644
--- a/kernel/sched/autogroup.h
+++ b/kernel/sched/autogroup.h
@@ -7,9 +7,9 @@
 
 struct autogroup {
 	/*
-	 * reference doesn't mean how many thread attach to this
-	 * autogroup now. It just stands for the number of task
-	 * could use this autogroup.
+	 * Reference doesn't mean how many threads attach to this
+	 * autogroup now. It just stands for the number of tasks
+	 * which could use this autogroup.
 	 */
 	struct kref		kref;
 	struct task_group	*tg;
@@ -56,11 +56,9 @@ autogroup_task_group(struct task_struct *p, struct task_group *tg)
 	return tg;
 }
 
-#ifdef CONFIG_SCHED_DEBUG
 static inline int autogroup_path(struct task_group *tg, char *buf, int buflen)
 {
 	return 0;
 }
-#endif
 
 #endif /* CONFIG_SCHED_AUTOGROUP */
diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c
index e086bab..7da6bec 100644
--- a/kernel/sched/clock.c
+++ b/kernel/sched/clock.c
@@ -1,5 +1,5 @@
 /*
- * sched_clock for unstable cpu clocks
+ * sched_clock() for unstable CPU clocks
  *
  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  *
@@ -11,7 +11,7 @@
  *   Guillaume Chazarain <guichaz@gmail.com>
  *
  *
- * What:
+ * What this file implements:
  *
  * cpu_clock(i) provides a fast (execution time) high resolution
  * clock with bounded drift between CPUs. The value of cpu_clock(i)
@@ -26,11 +26,11 @@
  * at 0 on boot (but people really shouldn't rely on that).
  *
  * cpu_clock(i)       -- can be used from any context, including NMI.
- * local_clock()      -- is cpu_clock() on the current cpu.
+ * local_clock()      -- is cpu_clock() on the current CPU.
  *
  * sched_clock_cpu(i)
  *
- * How:
+ * How it is implemented:
  *
  * The implementation either uses sched_clock() when
  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
@@ -302,21 +302,21 @@ static u64 sched_clock_remote(struct sched_clock_data *scd)
 	 * cmpxchg64 below only protects one readout.
 	 *
 	 * We must reread via sched_clock_local() in the retry case on
-	 * 32bit as an NMI could use sched_clock_local() via the
+	 * 32-bit kernels as an NMI could use sched_clock_local() via the
 	 * tracer and hit between the readout of
-	 * the low32bit and the high 32bit portion.
+	 * the low 32-bit and the high 32-bit portion.
 	 */
 	this_clock = sched_clock_local(my_scd);
 	/*
-	 * We must enforce atomic readout on 32bit, otherwise the
-	 * update on the remote cpu can hit inbetween the readout of
-	 * the low32bit and the high 32bit portion.
+	 * We must enforce atomic readout on 32-bit, otherwise the
+	 * update on the remote CPU can hit inbetween the readout of
+	 * the low 32-bit and the high 32-bit portion.
 	 */
 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
 #else
 	/*
-	 * On 64bit the read of [my]scd->clock is atomic versus the
-	 * update, so we can avoid the above 32bit dance.
+	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
+	 * update, so we can avoid the above 32-bit dance.
 	 */
 	sched_clock_local(my_scd);
 again:
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 8fff4f1..9427b59 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -135,7 +135,7 @@ struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 		 *					[L] ->on_rq
 		 *	RELEASE (rq->lock)
 		 *
-		 * If we observe the old cpu in task_rq_lock, the acquire of
+		 * If we observe the old CPU in task_rq_lock, the acquire of
 		 * the old rq->lock will fully serialize against the stores.
 		 *
 		 * If we observe the new CPU in task_rq_lock, the acquire will
@@ -1457,7 +1457,7 @@ EXPORT_SYMBOL_GPL(kick_process);
  *
  *  - cpu_active must be a subset of cpu_online
  *
- *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
+ *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
  *    see __set_cpus_allowed_ptr(). At this point the newly online
  *    CPU isn't yet part of the sched domains, and balancing will not
  *    see it.
@@ -3037,7 +3037,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)
 
 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 	/*
-	 * 64-bit doesn't need locks to atomically read a 64bit value.
+	 * 64-bit doesn't need locks to atomically read a 64-bit value.
 	 * So we have a optimization chance when the task's delta_exec is 0.
 	 * Reading ->on_cpu is racy, but this is ok.
 	 *
diff --git a/kernel/sched/cpuacct.c b/kernel/sched/cpuacct.c
index 44ab32a..1abd325 100644
--- a/kernel/sched/cpuacct.c
+++ b/kernel/sched/cpuacct.c
@@ -18,7 +18,7 @@
  * (balbir@in.ibm.com).
  */
 
-/* Time spent by the tasks of the cpu accounting group executing in ... */
+/* Time spent by the tasks of the CPU accounting group executing in ... */
 enum cpuacct_stat_index {
 	CPUACCT_STAT_USER,	/* ... user mode */
 	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */
@@ -35,12 +35,12 @@ struct cpuacct_usage {
 	u64	usages[CPUACCT_STAT_NSTATS];
 };
 
-/* track cpu usage of a group of tasks and its child groups */
+/* track CPU usage of a group of tasks and its child groups */
 struct cpuacct {
-	struct cgroup_subsys_state css;
-	/* cpuusage holds pointer to a u64-type object on every cpu */
-	struct cpuacct_usage __percpu *cpuusage;
-	struct kernel_cpustat __percpu *cpustat;
+	struct cgroup_subsys_state	css;
+	/* cpuusage holds pointer to a u64-type object on every CPU */
+	struct cpuacct_usage __percpu	*cpuusage;
+	struct kernel_cpustat __percpu	*cpustat;
 };
 
 static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css)
@@ -48,7 +48,7 @@ static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css)
 	return css ? container_of(css, struct cpuacct, css) : NULL;
 }
 
-/* return cpu accounting group to which this task belongs */
+/* Return CPU accounting group to which this task belongs */
 static inline struct cpuacct *task_ca(struct task_struct *tsk)
 {
 	return css_ca(task_css(tsk, cpuacct_cgrp_id));
@@ -65,7 +65,7 @@ static struct cpuacct root_cpuacct = {
 	.cpuusage	= &root_cpuacct_cpuusage,
 };
 
-/* create a new cpu accounting group */
+/* Create a new CPU accounting group */
 static struct cgroup_subsys_state *
 cpuacct_css_alloc(struct cgroup_subsys_state *parent_css)
 {
@@ -96,7 +96,7 @@ cpuacct_css_alloc(struct cgroup_subsys_state *parent_css)
 	return ERR_PTR(-ENOMEM);
 }
 
-/* destroy an existing cpu accounting group */
+/* Destroy an existing CPU accounting group */
 static void cpuacct_css_free(struct cgroup_subsys_state *css)
 {
 	struct cpuacct *ca = css_ca(css);
@@ -162,7 +162,7 @@ static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
 #endif
 }
 
-/* return total cpu usage (in nanoseconds) of a group */
+/* Return total CPU usage (in nanoseconds) of a group */
 static u64 __cpuusage_read(struct cgroup_subsys_state *css,
 			   enum cpuacct_stat_index index)
 {
diff --git a/kernel/sched/cpudeadline.c b/kernel/sched/cpudeadline.c
index 6a9defe..cb172b6 100644
--- a/kernel/sched/cpudeadline.c
+++ b/kernel/sched/cpudeadline.c
@@ -10,7 +10,6 @@
  *  as published by the Free Software Foundation; version 2
  *  of the License.
  */
-
 #include <linux/gfp.h>
 #include <linux/kernel.h>
 #include <linux/slab.h>
@@ -147,9 +146,9 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p,
 }
 
 /*
- * cpudl_clear - remove a cpu from the cpudl max-heap
+ * cpudl_clear - remove a CPU from the cpudl max-heap
  * @cp: the cpudl max-heap context
- * @cpu: the target cpu
+ * @cpu: the target CPU
  *
  * Notes: assumes cpu_rq(cpu)->lock is locked
  *
@@ -188,8 +187,8 @@ void cpudl_clear(struct cpudl *cp, int cpu)
 /*
  * cpudl_set - update the cpudl max-heap
  * @cp: the cpudl max-heap context
- * @cpu: the target cpu
- * @dl: the new earliest deadline for this cpu
+ * @cpu: the target CPU
+ * @dl: the new earliest deadline for this CPU
  *
  * Notes: assumes cpu_rq(cpu)->lock is locked
  *
@@ -224,7 +223,7 @@ void cpudl_set(struct cpudl *cp, int cpu, u64 dl)
 /*
  * cpudl_set_freecpu - Set the cpudl.free_cpus
  * @cp: the cpudl max-heap context
- * @cpu: rd attached cpu
+ * @cpu: rd attached CPU
  */
 void cpudl_set_freecpu(struct cpudl *cp, int cpu)
 {
@@ -234,7 +233,7 @@ void cpudl_set_freecpu(struct cpudl *cp, int cpu)
 /*
  * cpudl_clear_freecpu - Clear the cpudl.free_cpus
  * @cp: the cpudl max-heap context
- * @cpu: rd attached cpu
+ * @cpu: rd attached CPU
  */
 void cpudl_clear_freecpu(struct cpudl *cp, int cpu)
 {
diff --git a/kernel/sched/cpudeadline.h b/kernel/sched/cpudeadline.h
index b010d26..c26e7a0 100644
--- a/kernel/sched/cpudeadline.h
+++ b/kernel/sched/cpudeadline.h
@@ -1,35 +1,28 @@
 /* SPDX-License-Identifier: GPL-2.0 */
-#ifndef _LINUX_CPUDL_H
-#define _LINUX_CPUDL_H
-
 #include <linux/sched.h>
 #include <linux/sched/deadline.h>
 
-#define IDX_INVALID     -1
+#define IDX_INVALID		-1
 
 struct cpudl_item {
-	u64 dl;
-	int cpu;
-	int idx;
+	u64			dl;
+	int			cpu;
+	int			idx;
 };
 
 struct cpudl {
-	raw_spinlock_t lock;
-	int size;
-	cpumask_var_t free_cpus;
-	struct cpudl_item *elements;
+	raw_spinlock_t		lock;
+	int			size;
+	cpumask_var_t		free_cpus;
+	struct cpudl_item	*elements;
 };
 
-
 #ifdef CONFIG_SMP
-int cpudl_find(struct cpudl *cp, struct task_struct *p,
-	       struct cpumask *later_mask);
+int  cpudl_find(struct cpudl *cp, struct task_struct *p, struct cpumask *later_mask);
 void cpudl_set(struct cpudl *cp, int cpu, u64 dl);
 void cpudl_clear(struct cpudl *cp, int cpu);
-int cpudl_init(struct cpudl *cp);
+int  cpudl_init(struct cpudl *cp);
 void cpudl_set_freecpu(struct cpudl *cp, int cpu);
 void cpudl_clear_freecpu(struct cpudl *cp, int cpu);
 void cpudl_cleanup(struct cpudl *cp);
 #endif /* CONFIG_SMP */
-
-#endif /* _LINUX_CPUDL_H */
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index 7936f54..0dad816 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -20,52 +20,52 @@
 #include "sched.h"
 
 struct sugov_tunables {
-	struct gov_attr_set attr_set;
-	unsigned int rate_limit_us;
+	struct gov_attr_set	attr_set;
+	unsigned int		rate_limit_us;
 };
 
 struct sugov_policy {
-	struct cpufreq_policy *policy;
+	struct cpufreq_policy	*policy;
 
-	struct sugov_tunables *tunables;
-	struct list_head tunables_hook;
+	struct sugov_tunables	*tunables;
+	struct list_head	tunables_hook;
 
-	raw_spinlock_t update_lock;  /* For shared policies */
-	u64 last_freq_update_time;
-	s64 freq_update_delay_ns;
-	unsigned int next_freq;
-	unsigned int cached_raw_freq;
+	raw_spinlock_t		update_lock;	/* For shared policies */
+	u64			last_freq_update_time;
+	s64			freq_update_delay_ns;
+	unsigned int		next_freq;
+	unsigned int		cached_raw_freq;
 
-	/* The next fields are only needed if fast switch cannot be used. */
-	struct irq_work irq_work;
-	struct kthread_work work;
-	struct mutex work_lock;
-	struct kthread_worker worker;
-	struct task_struct *thread;
-	bool work_in_progress;
+	/* The next fields are only needed if fast switch cannot be used: */
+	struct			irq_work irq_work;
+	struct			kthread_work work;
+	struct			mutex work_lock;
+	struct			kthread_worker worker;
+	struct task_struct	*thread;
+	bool			work_in_progress;
 
-	bool need_freq_update;
+	bool			need_freq_update;
 };
 
 struct sugov_cpu {
-	struct update_util_data update_util;
-	struct sugov_policy *sg_policy;
-	unsigned int cpu;
+	struct update_util_data	update_util;
+	struct sugov_policy	*sg_policy;
+	unsigned int		cpu;
 
-	bool iowait_boost_pending;
-	unsigned int iowait_boost;
-	unsigned int iowait_boost_max;
+	bool			iowait_boost_pending;
+	unsigned int		iowait_boost;
+	unsigned int		iowait_boost_max;
 	u64 last_update;
 
-	/* The fields below are only needed when sharing a policy. */
-	unsigned long util_cfs;
-	unsigned long util_dl;
-	unsigned long max;
-	unsigned int flags;
+	/* The fields below are only needed when sharing a policy: */
+	unsigned long		util_cfs;
+	unsigned long		util_dl;
+	unsigned long		max;
+	unsigned int		flags;
 
-	/* The field below is for single-CPU policies only. */
+	/* The field below is for single-CPU policies only: */
 #ifdef CONFIG_NO_HZ_COMMON
-	unsigned long saved_idle_calls;
+	unsigned long		saved_idle_calls;
 #endif
 };
 
@@ -79,9 +79,9 @@ static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 
 	/*
 	 * Since cpufreq_update_util() is called with rq->lock held for
-	 * the @target_cpu, our per-cpu data is fully serialized.
+	 * the @target_cpu, our per-CPU data is fully serialized.
 	 *
-	 * However, drivers cannot in general deal with cross-cpu
+	 * However, drivers cannot in general deal with cross-CPU
 	 * requests, so while get_next_freq() will work, our
 	 * sugov_update_commit() call may not for the fast switching platforms.
 	 *
@@ -111,6 +111,7 @@ static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
 	}
 
 	delta_ns = time - sg_policy->last_freq_update_time;
+
 	return delta_ns >= sg_policy->freq_update_delay_ns;
 }
 
@@ -345,8 +346,8 @@ static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
 	return get_next_freq(sg_policy, util, max);
 }
 
-static void sugov_update_shared(struct update_util_data *hook, u64 time,
-				unsigned int flags)
+static void
+sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
 {
 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
@@ -423,8 +424,8 @@ static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
 }
 
-static ssize_t rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf,
-				   size_t count)
+static ssize_t
+rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
 {
 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
 	struct sugov_policy *sg_policy;
@@ -479,11 +480,11 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
 {
 	struct task_struct *thread;
 	struct sched_attr attr = {
-		.size = sizeof(struct sched_attr),
-		.sched_policy = SCHED_DEADLINE,
-		.sched_flags = SCHED_FLAG_SUGOV,
-		.sched_nice = 0,
-		.sched_priority = 0,
+		.size		= sizeof(struct sched_attr),
+		.sched_policy	= SCHED_DEADLINE,
+		.sched_flags	= SCHED_FLAG_SUGOV,
+		.sched_nice	= 0,
+		.sched_priority	= 0,
 		/*
 		 * Fake (unused) bandwidth; workaround to "fix"
 		 * priority inheritance.
@@ -663,21 +664,21 @@ static int sugov_start(struct cpufreq_policy *policy)
 	struct sugov_policy *sg_policy = policy->governor_data;
 	unsigned int cpu;
 
-	sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
-	sg_policy->last_freq_update_time = 0;
-	sg_policy->next_freq = UINT_MAX;
-	sg_policy->work_in_progress = false;
-	sg_policy->need_freq_update = false;
-	sg_policy->cached_raw_freq = 0;
+	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
+	sg_policy->last_freq_update_time	= 0;
+	sg_policy->next_freq			= UINT_MAX;
+	sg_policy->work_in_progress		= false;
+	sg_policy->need_freq_update		= false;
+	sg_policy->cached_raw_freq		= 0;
 
 	for_each_cpu(cpu, policy->cpus) {
 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
 
 		memset(sg_cpu, 0, sizeof(*sg_cpu));
-		sg_cpu->cpu = cpu;
-		sg_cpu->sg_policy = sg_policy;
-		sg_cpu->flags = 0;
-		sg_cpu->iowait_boost_max = policy->cpuinfo.max_freq;
+		sg_cpu->cpu			= cpu;
+		sg_cpu->sg_policy		= sg_policy;
+		sg_cpu->flags			= 0;
+		sg_cpu->iowait_boost_max	= policy->cpuinfo.max_freq;
 	}
 
 	for_each_cpu(cpu, policy->cpus) {
@@ -721,14 +722,14 @@ static void sugov_limits(struct cpufreq_policy *policy)
 }
 
 static struct cpufreq_governor schedutil_gov = {
-	.name = "schedutil",
-	.owner = THIS_MODULE,
-	.dynamic_switching = true,
-	.init = sugov_init,
-	.exit = sugov_exit,
-	.start = sugov_start,
-	.stop = sugov_stop,
-	.limits = sugov_limits,
+	.name			= "schedutil",
+	.owner			= THIS_MODULE,
+	.dynamic_switching	= true,
+	.init			= sugov_init,
+	.exit			= sugov_exit,
+	.start			= sugov_start,
+	.stop			= sugov_stop,
+	.limits			= sugov_limits,
 };
 
 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
diff --git a/kernel/sched/cpupri.c b/kernel/sched/cpupri.c
index 2511aba..f43e14c 100644
--- a/kernel/sched/cpupri.c
+++ b/kernel/sched/cpupri.c
@@ -14,7 +14,7 @@
  *
  *  going from the lowest priority to the highest.  CPUs in the INVALID state
  *  are not eligible for routing.  The system maintains this state with
- *  a 2 dimensional bitmap (the first for priority class, the second for cpus
+ *  a 2 dimensional bitmap (the first for priority class, the second for CPUs
  *  in that class).  Therefore a typical application without affinity
  *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
  *  searches).  For tasks with affinity restrictions, the algorithm has a
@@ -26,7 +26,6 @@
  *  as published by the Free Software Foundation; version 2
  *  of the License.
  */
-
 #include <linux/gfp.h>
 #include <linux/sched.h>
 #include <linux/sched/rt.h>
@@ -128,9 +127,9 @@ int cpupri_find(struct cpupri *cp, struct task_struct *p,
 }
 
 /**
- * cpupri_set - update the cpu priority setting
+ * cpupri_set - update the CPU priority setting
  * @cp: The cpupri context
- * @cpu: The target cpu
+ * @cpu: The target CPU
  * @newpri: The priority (INVALID-RT99) to assign to this CPU
  *
  * Note: Assumes cpu_rq(cpu)->lock is locked
@@ -151,7 +150,7 @@ void cpupri_set(struct cpupri *cp, int cpu, int newpri)
 		return;
 
 	/*
-	 * If the cpu was currently mapped to a different value, we
+	 * If the CPU was currently mapped to a different value, we
 	 * need to map it to the new value then remove the old value.
 	 * Note, we must add the new value first, otherwise we risk the
 	 * cpu being missed by the priority loop in cpupri_find.
diff --git a/kernel/sched/cpupri.h b/kernel/sched/cpupri.h
index bab0500..141a06c 100644
--- a/kernel/sched/cpupri.h
+++ b/kernel/sched/cpupri.h
@@ -1,32 +1,26 @@
 /* SPDX-License-Identifier: GPL-2.0 */
-#ifndef _LINUX_CPUPRI_H
-#define _LINUX_CPUPRI_H
-
 #include <linux/sched.h>
 
 #define CPUPRI_NR_PRIORITIES	(MAX_RT_PRIO + 2)
 
-#define CPUPRI_INVALID -1
-#define CPUPRI_IDLE     0
-#define CPUPRI_NORMAL   1
+#define CPUPRI_INVALID		-1
+#define CPUPRI_IDLE		 0
+#define CPUPRI_NORMAL		 1
 /* values 2-101 are RT priorities 0-99 */
 
 struct cpupri_vec {
-	atomic_t	count;
-	cpumask_var_t	mask;
+	atomic_t		count;
+	cpumask_var_t		mask;
 };
 
 struct cpupri {
-	struct cpupri_vec pri_to_cpu[CPUPRI_NR_PRIORITIES];
-	int *cpu_to_pri;
+	struct cpupri_vec	pri_to_cpu[CPUPRI_NR_PRIORITIES];
+	int			*cpu_to_pri;
 };
 
 #ifdef CONFIG_SMP
-int  cpupri_find(struct cpupri *cp,
-		 struct task_struct *p, struct cpumask *lowest_mask);
+int  cpupri_find(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask);
 void cpupri_set(struct cpupri *cp, int cpu, int pri);
-int cpupri_init(struct cpupri *cp);
+int  cpupri_init(struct cpupri *cp);
 void cpupri_cleanup(struct cpupri *cp);
 #endif
-
-#endif /* _LINUX_CPUPRI_H */
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index bac6ac9..d3b450b 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -113,9 +113,9 @@ static inline void task_group_account_field(struct task_struct *p, int index,
 }
 
 /*
- * Account user cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in user space since the last update
+ * Account user CPU time to a process.
+ * @p: the process that the CPU time gets accounted to
+ * @cputime: the CPU time spent in user space since the last update
  */
 void account_user_time(struct task_struct *p, u64 cputime)
 {
@@ -135,9 +135,9 @@ void account_user_time(struct task_struct *p, u64 cputime)
 }
 
 /*
- * Account guest cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in virtual machine since the last update
+ * Account guest CPU time to a process.
+ * @p: the process that the CPU time gets accounted to
+ * @cputime: the CPU time spent in virtual machine since the last update
  */
 void account_guest_time(struct task_struct *p, u64 cputime)
 {
@@ -159,9 +159,9 @@ void account_guest_time(struct task_struct *p, u64 cputime)
 }
 
 /*
- * Account system cpu time to a process and desired cpustat field
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in kernel space since the last update
+ * Account system CPU time to a process and desired cpustat field
+ * @p: the process that the CPU time gets accounted to
+ * @cputime: the CPU time spent in kernel space since the last update
  * @index: pointer to cpustat field that has to be updated
  */
 void account_system_index_time(struct task_struct *p,
@@ -179,10 +179,10 @@ void account_system_index_time(struct task_struct *p,
 }
 
 /*
- * Account system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
+ * Account system CPU time to a process.
+ * @p: the process that the CPU time gets accounted to
  * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
+ * @cputime: the CPU time spent in kernel space since the last update
  */
 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 {
@@ -205,7 +205,7 @@ void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 
 /*
  * Account for involuntary wait time.
- * @cputime: the cpu time spent in involuntary wait
+ * @cputime: the CPU time spent in involuntary wait
  */
 void account_steal_time(u64 cputime)
 {
@@ -216,7 +216,7 @@ void account_steal_time(u64 cputime)
 
 /*
  * Account for idle time.
- * @cputime: the cpu time spent in idle wait
+ * @cputime: the CPU time spent in idle wait
  */
 void account_idle_time(u64 cputime)
 {
@@ -338,7 +338,7 @@ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
 /*
  * Account a tick to a process and cpustat
- * @p: the process that the cpu time gets accounted to
+ * @p: the process that the CPU time gets accounted to
  * @user_tick: is the tick from userspace
  * @rq: the pointer to rq
  *
@@ -400,17 +400,16 @@ static void irqtime_account_idle_ticks(int ticks)
 	irqtime_account_process_tick(current, 0, rq, ticks);
 }
 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
-static inline void irqtime_account_idle_ticks(int ticks) {}
+static inline void irqtime_account_idle_ticks(int ticks) { }
 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
-						struct rq *rq, int nr_ticks) {}
+						struct rq *rq, int nr_ticks) { }
 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 
 /*
  * Use precise platform statistics if available:
  */
 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
-
-#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
+# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 void vtime_common_task_switch(struct task_struct *prev)
 {
 	if (is_idle_task(prev))
@@ -421,8 +420,7 @@ void vtime_common_task_switch(struct task_struct *prev)
 	vtime_flush(prev);
 	arch_vtime_task_switch(prev);
 }
-#endif
-
+# endif
 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 
 
@@ -469,10 +467,12 @@ void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 	*ut = cputime.utime;
 	*st = cputime.stime;
 }
-#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
+
+#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
+
 /*
- * Account a single tick of cpu time.
- * @p: the process that the cpu time gets accounted to
+ * Account a single tick of CPU time.
+ * @p: the process that the CPU time gets accounted to
  * @user_tick: indicates if the tick is a user or a system tick
  */
 void account_process_tick(struct task_struct *p, int user_tick)
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 65cd5ea..58f8b7b 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -539,12 +539,12 @@ static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p
 
 		/*
 		 * If we cannot preempt any rq, fall back to pick any
-		 * online cpu.
+		 * online CPU:
 		 */
 		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
 		if (cpu >= nr_cpu_ids) {
 			/*
-			 * Fail to find any suitable cpu.
+			 * Failed to find any suitable CPU.
 			 * The task will never come back!
 			 */
 			BUG_ON(dl_bandwidth_enabled());
@@ -608,8 +608,7 @@ static inline void queue_pull_task(struct rq *rq)
 
 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
-static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
-				  int flags);
+static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 
 /*
  * We are being explicitly informed that a new instance is starting,
@@ -1873,7 +1872,7 @@ static int find_later_rq(struct task_struct *task)
 
 	/*
 	 * We have to consider system topology and task affinity
-	 * first, then we can look for a suitable cpu.
+	 * first, then we can look for a suitable CPU.
 	 */
 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
 		return -1;
@@ -1887,7 +1886,7 @@ static int find_later_rq(struct task_struct *task)
 	 * Now we check how well this matches with task's
 	 * affinity and system topology.
 	 *
-	 * The last cpu where the task run is our first
+	 * The last CPU where the task run is our first
 	 * guess, since it is most likely cache-hot there.
 	 */
 	if (cpumask_test_cpu(cpu, later_mask))
@@ -1917,9 +1916,9 @@ static int find_later_rq(struct task_struct *task)
 			best_cpu = cpumask_first_and(later_mask,
 							sched_domain_span(sd));
 			/*
-			 * Last chance: if a cpu being in both later_mask
+			 * Last chance: if a CPU being in both later_mask
 			 * and current sd span is valid, that becomes our
-			 * choice. Of course, the latest possible cpu is
+			 * choice. Of course, the latest possible CPU is
 			 * already under consideration through later_mask.
 			 */
 			if (best_cpu < nr_cpu_ids) {
@@ -2075,7 +2074,7 @@ static int push_dl_task(struct rq *rq)
 		if (task == next_task) {
 			/*
 			 * The task is still there. We don't try
-			 * again, some other cpu will pull it when ready.
+			 * again, some other CPU will pull it when ready.
 			 */
 			goto out;
 		}
@@ -2308,7 +2307,7 @@ static void switched_from_dl(struct rq *rq, struct task_struct *p)
 	/*
 	 * Since this might be the only -deadline task on the rq,
 	 * this is the right place to try to pull some other one
-	 * from an overloaded cpu, if any.
+	 * from an overloaded CPU, if any.
 	 */
 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
 		return;
@@ -2634,17 +2633,17 @@ void __dl_clear_params(struct task_struct *p)
 {
 	struct sched_dl_entity *dl_se = &p->dl;
 
-	dl_se->dl_runtime = 0;
-	dl_se->dl_deadline = 0;
-	dl_se->dl_period = 0;
-	dl_se->flags = 0;
-	dl_se->dl_bw = 0;
-	dl_se->dl_density = 0;
+	dl_se->dl_runtime		= 0;
+	dl_se->dl_deadline		= 0;
+	dl_se->dl_period		= 0;
+	dl_se->flags			= 0;
+	dl_se->dl_bw			= 0;
+	dl_se->dl_density		= 0;
 
-	dl_se->dl_throttled = 0;
-	dl_se->dl_yielded = 0;
-	dl_se->dl_non_contending = 0;
-	dl_se->dl_overrun = 0;
+	dl_se->dl_throttled		= 0;
+	dl_se->dl_yielded		= 0;
+	dl_se->dl_non_contending	= 0;
+	dl_se->dl_overrun		= 0;
 }
 
 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
@@ -2663,21 +2662,22 @@ bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
 #ifdef CONFIG_SMP
 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
 {
-	unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
-							cs_cpus_allowed);
+	unsigned int dest_cpu;
 	struct dl_bw *dl_b;
 	bool overflow;
 	int cpus, ret;
 	unsigned long flags;
 
+	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
+
 	rcu_read_lock_sched();
 	dl_b = dl_bw_of(dest_cpu);
 	raw_spin_lock_irqsave(&dl_b->lock, flags);
 	cpus = dl_bw_cpus(dest_cpu);
 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
-	if (overflow)
+	if (overflow) {
 		ret = -EBUSY;
-	else {
+	} else {
 		/*
 		 * We reserve space for this task in the destination
 		 * root_domain, as we can't fail after this point.
@@ -2689,6 +2689,7 @@ int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allo
 	}
 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
 	rcu_read_unlock_sched();
+
 	return ret;
 }
 
@@ -2709,6 +2710,7 @@ int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
 		ret = 0;
 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
 	rcu_read_unlock_sched();
+
 	return ret;
 }
 
@@ -2726,6 +2728,7 @@ bool dl_cpu_busy(unsigned int cpu)
 	overflow = __dl_overflow(dl_b, cpus, 0, 0);
 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
 	rcu_read_unlock_sched();
+
 	return overflow;
 }
 #endif
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index 1ca0130..7c82a9b 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -9,7 +9,6 @@
  * it under the terms of the GNU General Public License version 2 as
  * published by the Free Software Foundation.
  */
-
 #include <linux/proc_fs.h>
 #include <linux/sched/mm.h>
 #include <linux/sched/task.h>
@@ -274,34 +273,19 @@ sd_alloc_ctl_domain_table(struct sched_domain *sd)
 	if (table == NULL)
 		return NULL;
 
-	set_table_entry(&table[0], "min_interval", &sd->min_interval,
-		sizeof(long), 0644, proc_doulongvec_minmax, false);
-	set_table_entry(&table[1], "max_interval", &sd->max_interval,
-		sizeof(long), 0644, proc_doulongvec_minmax, false);
-	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
-		sizeof(int), 0644, proc_dointvec_minmax, true);
-	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
-		sizeof(int), 0644, proc_dointvec_minmax, true);
-	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
-		sizeof(int), 0644, proc_dointvec_minmax, true);
-	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
-		sizeof(int), 0644, proc_dointvec_minmax, true);
-	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
-		sizeof(int), 0644, proc_dointvec_minmax, true);
-	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
-		sizeof(int), 0644, proc_dointvec_minmax, false);
-	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
-		sizeof(int), 0644, proc_dointvec_minmax, false);
-	set_table_entry(&table[9], "cache_nice_tries",
-		&sd->cache_nice_tries,
-		sizeof(int), 0644, proc_dointvec_minmax, false);
-	set_table_entry(&table[10], "flags", &sd->flags,
-		sizeof(int), 0644, proc_dointvec_minmax, false);
-	set_table_entry(&table[11], "max_newidle_lb_cost",
-		&sd->max_newidle_lb_cost,
-		sizeof(long), 0644, proc_doulongvec_minmax, false);
-	set_table_entry(&table[12], "name", sd->name,
-		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
+	set_table_entry(&table[0] , "min_interval",	   &sd->min_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
+	set_table_entry(&table[1] , "max_interval",	   &sd->max_interval,	     sizeof(long), 0644, proc_doulongvec_minmax, false);
+	set_table_entry(&table[2] , "busy_idx",		   &sd->busy_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
+	set_table_entry(&table[3] , "idle_idx",		   &sd->idle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
+	set_table_entry(&table[4] , "newidle_idx",	   &sd->newidle_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
+	set_table_entry(&table[5] , "wake_idx",		   &sd->wake_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
+	set_table_entry(&table[6] , "forkexec_idx",	   &sd->forkexec_idx,	     sizeof(int) , 0644, proc_dointvec_minmax,   true );
+	set_table_entry(&table[7] , "busy_factor",	   &sd->busy_factor,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
+	set_table_entry(&table[8] , "imbalance_pct",	   &sd->imbalance_pct,	     sizeof(int) , 0644, proc_dointvec_minmax,   false);
+	set_table_entry(&table[9] , "cache_nice_tries",	   &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
+	set_table_entry(&table[10], "flags",		   &sd->flags,		     sizeof(int) , 0644, proc_dointvec_minmax,   false);
+	set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
+	set_table_entry(&table[12], "name",		   sd->name,		CORENAME_MAX_SIZE, 0444, proc_dostring,		 false);
 	/* &table[13] is terminator */
 
 	return table;
@@ -332,8 +316,8 @@ static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
 	return table;
 }
 
-static cpumask_var_t sd_sysctl_cpus;
-static struct ctl_table_header *sd_sysctl_header;
+static cpumask_var_t		sd_sysctl_cpus;
+static struct ctl_table_header	*sd_sysctl_header;
 
 void register_sched_domain_sysctl(void)
 {
@@ -413,14 +397,10 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
 {
 	struct sched_entity *se = tg->se[cpu];
 
-#define P(F) \
-	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
-#define P_SCHEDSTAT(F) \
-	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)schedstat_val(F))
-#define PN(F) \
-	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
-#define PN_SCHEDSTAT(F) \
-	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
+#define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
+#define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
+#define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
+#define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
 
 	if (!se)
 		return;
@@ -428,6 +408,7 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
 	PN(se->exec_start);
 	PN(se->vruntime);
 	PN(se->sum_exec_runtime);
+
 	if (schedstat_enabled()) {
 		PN_SCHEDSTAT(se->statistics.wait_start);
 		PN_SCHEDSTAT(se->statistics.sleep_start);
@@ -440,6 +421,7 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
 		PN_SCHEDSTAT(se->statistics.wait_sum);
 		P_SCHEDSTAT(se->statistics.wait_count);
 	}
+
 	P(se->load.weight);
 	P(se->runnable_weight);
 #ifdef CONFIG_SMP
@@ -464,6 +446,7 @@ static char *task_group_path(struct task_group *tg)
 		return group_path;
 
 	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
+
 	return group_path;
 }
 #endif
@@ -799,9 +782,9 @@ void sysrq_sched_debug_show(void)
 /*
  * This itererator needs some explanation.
  * It returns 1 for the header position.
- * This means 2 is cpu 0.
- * In a hotplugged system some cpus, including cpu 0, may be missing so we have
- * to use cpumask_* to iterate over the cpus.
+ * This means 2 is CPU 0.
+ * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
+ * to use cpumask_* to iterate over the CPUs.
  */
 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 {
@@ -821,6 +804,7 @@ static void *sched_debug_start(struct seq_file *file, loff_t *offset)
 
 	if (n < nr_cpu_ids)
 		return (void *)(unsigned long)(n + 2);
+
 	return NULL;
 }
 
@@ -835,10 +819,10 @@ static void sched_debug_stop(struct seq_file *file, void *data)
 }
 
 static const struct seq_operations sched_debug_sops = {
-	.start = sched_debug_start,
-	.next = sched_debug_next,
-	.stop = sched_debug_stop,
-	.show = sched_debug_show,
+	.start		= sched_debug_start,
+	.next		= sched_debug_next,
+	.stop		= sched_debug_stop,
+	.show		= sched_debug_show,
 };
 
 static int sched_debug_release(struct inode *inode, struct file *file)
@@ -876,14 +860,10 @@ static int __init init_sched_debug_procfs(void)
 
 __initcall(init_sched_debug_procfs);
 
-#define __P(F) \
-	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
-#define P(F) \
-	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
-#define __PN(F) \
-	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
-#define PN(F) \
-	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
+#define __P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)F)
+#define   P(F)	SEQ_printf(m, "%-45s:%21Ld\n",	     #F, (long long)p->F)
+#define __PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
+#define   PN(F)	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
 
 
 #ifdef CONFIG_NUMA_BALANCING
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index e1febd2..1f877de 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -20,7 +20,6 @@
  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  */
-
 #include <linux/sched/mm.h>
 #include <linux/sched/topology.h>
 
@@ -103,7 +102,7 @@ const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
 
 #ifdef CONFIG_SMP
 /*
- * For asym packing, by default the lower numbered cpu has higher priority.
+ * For asym packing, by default the lower numbered CPU has higher priority.
  */
 int __weak arch_asym_cpu_priority(int cpu)
 {
@@ -1181,7 +1180,7 @@ pid_t task_numa_group_id(struct task_struct *p)
 }
 
 /*
- * The averaged statistics, shared & private, memory & cpu,
+ * The averaged statistics, shared & private, memory & CPU,
  * occupy the first half of the array. The second half of the
  * array is for current counters, which are averaged into the
  * first set by task_numa_placement.
@@ -1587,7 +1586,7 @@ static void task_numa_compare(struct task_numa_env *env,
 	 * be incurred if the tasks were swapped.
 	 */
 	if (cur) {
-		/* Skip this swap candidate if cannot move to the source cpu */
+		/* Skip this swap candidate if cannot move to the source CPU: */
 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
 			goto unlock;
 
@@ -1631,7 +1630,7 @@ static void task_numa_compare(struct task_numa_env *env,
 		goto balance;
 	}
 
-	/* Balance doesn't matter much if we're running a task per cpu */
+	/* Balance doesn't matter much if we're running a task per CPU: */
 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
 			dst_rq->nr_running == 1)
 		goto assign;
@@ -1676,7 +1675,7 @@ static void task_numa_compare(struct task_numa_env *env,
 	 */
 	if (!cur) {
 		/*
-		 * select_idle_siblings() uses an per-cpu cpumask that
+		 * select_idle_siblings() uses an per-CPU cpumask that
 		 * can be used from IRQ context.
 		 */
 		local_irq_disable();
@@ -3362,7 +3361,7 @@ static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
 }
 
 /*
- * Called within set_task_rq() right before setting a task's cpu. The
+ * Called within set_task_rq() right before setting a task's CPU. The
  * caller only guarantees p->pi_lock is held; no other assumptions,
  * including the state of rq->lock, should be made.
  */
@@ -3541,7 +3540,7 @@ update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cf
 
 	/*
 	 * runnable_sum can't be lower than running_sum
-	 * As running sum is scale with cpu capacity wehreas the runnable sum
+	 * As running sum is scale with CPU capacity wehreas the runnable sum
 	 * is not we rescale running_sum 1st
 	 */
 	running_sum = se->avg.util_sum /
@@ -4688,7 +4687,7 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
 	if (!se)
 		add_nr_running(rq, task_delta);
 
-	/* determine whether we need to wake up potentially idle cpu */
+	/* Determine whether we need to wake up potentially idle CPU: */
 	if (rq->curr == rq->idle && rq->cfs.nr_running)
 		resched_curr(rq);
 }
@@ -5053,7 +5052,7 @@ static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
 }
 
 /*
- * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
+ * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
  *
  * The race is harmless, since modifying bandwidth settings of unhooked group
  * bits doesn't do much.
@@ -5098,7 +5097,7 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
 		 */
 		cfs_rq->runtime_remaining = 1;
 		/*
-		 * Offline rq is schedulable till cpu is completely disabled
+		 * Offline rq is schedulable till CPU is completely disabled
 		 * in take_cpu_down(), so we prevent new cfs throttling here.
 		 */
 		cfs_rq->runtime_enabled = 0;
@@ -5335,8 +5334,8 @@ DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
  *
  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
  *
- * If a cpu misses updates for n ticks (as it was idle) and update gets
- * called on the n+1-th tick when cpu may be busy, then we have:
+ * If a CPU misses updates for n ticks (as it was idle) and update gets
+ * called on the n+1-th tick when CPU may be busy, then we have:
  *
  *   load_n   = (1 - 1/2^i)^n * load_0
  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
@@ -5480,7 +5479,7 @@ static unsigned long weighted_cpuload(struct rq *rq)
 #ifdef CONFIG_NO_HZ_COMMON
 /*
  * There is no sane way to deal with nohz on smp when using jiffies because the
- * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
+ * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  *
  * Therefore we need to avoid the delta approach from the regular tick when
@@ -5591,7 +5590,7 @@ void cpu_load_update_active(struct rq *this_rq)
 }
 
 /*
- * Return a low guess at the load of a migration-source cpu weighted
+ * Return a low guess at the load of a migration-source CPU weighted
  * according to the scheduling class and "nice" value.
  *
  * We want to under-estimate the load of migration sources, to
@@ -5609,7 +5608,7 @@ static unsigned long source_load(int cpu, int type)
 }
 
 /*
- * Return a high guess at the load of a migration-target cpu weighted
+ * Return a high guess at the load of a migration-target CPU weighted
  * according to the scheduling class and "nice" value.
  */
 static unsigned long target_load(int cpu, int type)
@@ -5889,7 +5888,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 		max_spare_cap = 0;
 
 		for_each_cpu(i, sched_group_span(group)) {
-			/* Bias balancing toward cpus of our domain */
+			/* Bias balancing toward CPUs of our domain */
 			if (local_group)
 				load = source_load(i, load_idx);
 			else
@@ -5919,7 +5918,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 			if (min_runnable_load > (runnable_load + imbalance)) {
 				/*
 				 * The runnable load is significantly smaller
-				 * so we can pick this new cpu
+				 * so we can pick this new CPU:
 				 */
 				min_runnable_load = runnable_load;
 				min_avg_load = avg_load;
@@ -5928,7 +5927,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 				   (100*min_avg_load > imbalance_scale*avg_load)) {
 				/*
 				 * The runnable loads are close so take the
-				 * blocked load into account through avg_load.
+				 * blocked load into account through avg_load:
 				 */
 				min_avg_load = avg_load;
 				idlest = group;
@@ -5989,7 +5988,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
 }
 
 /*
- * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
+ * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
  */
 static int
 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
@@ -6067,12 +6066,12 @@ static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p
 
 		new_cpu = find_idlest_group_cpu(group, p, cpu);
 		if (new_cpu == cpu) {
-			/* Now try balancing at a lower domain level of cpu */
+			/* Now try balancing at a lower domain level of 'cpu': */
 			sd = sd->child;
 			continue;
 		}
 
-		/* Now try balancing at a lower domain level of new_cpu */
+		/* Now try balancing at a lower domain level of 'new_cpu': */
 		cpu = new_cpu;
 		weight = sd->span_weight;
 		sd = NULL;
@@ -6082,7 +6081,6 @@ static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p
 			if (tmp->flags & sd_flag)
 				sd = tmp;
 		}
-		/* while loop will break here if sd == NULL */
 	}
 
 	return new_cpu;
@@ -6278,12 +6276,12 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
 		return target;
 
 	/*
-	 * If the previous cpu is cache affine and idle, don't be stupid.
+	 * If the previous CPU is cache affine and idle, don't be stupid:
 	 */
 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
 		return prev;
 
-	/* Check a recently used CPU as a potential idle candidate */
+	/* Check a recently used CPU as a potential idle candidate: */
 	recent_used_cpu = p->recent_used_cpu;
 	if (recent_used_cpu != prev &&
 	    recent_used_cpu != target &&
@@ -6292,7 +6290,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
 		/*
 		 * Replace recent_used_cpu with prev as it is a potential
-		 * candidate for the next wake.
+		 * candidate for the next wake:
 		 */
 		p->recent_used_cpu = prev;
 		return recent_used_cpu;
@@ -6357,7 +6355,7 @@ static inline unsigned long task_util(struct task_struct *p)
 }
 
 /*
- * cpu_util_wake: Compute cpu utilization with any contributions from
+ * cpu_util_wake: Compute CPU utilization with any contributions from
  * the waking task p removed.
  */
 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
@@ -6403,10 +6401,10 @@ static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  *
- * Balances load by selecting the idlest cpu in the idlest group, or under
- * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
+ * Balances load by selecting the idlest CPU in the idlest group, or under
+ * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
  *
- * Returns the target cpu number.
+ * Returns the target CPU number.
  *
  * preempt must be disabled.
  */
@@ -6431,7 +6429,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
 			break;
 
 		/*
-		 * If both cpu and prev_cpu are part of this domain,
+		 * If both 'cpu' and 'prev_cpu' are part of this domain,
 		 * cpu is a valid SD_WAKE_AFFINE target.
 		 */
 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
@@ -6482,9 +6480,9 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
 static void detach_entity_cfs_rq(struct sched_entity *se);
 
 /*
- * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
+ * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
  * cfs_rq_of(p) references at time of call are still valid and identify the
- * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
+ * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
  */
 static void migrate_task_rq_fair(struct task_struct *p)
 {
@@ -6918,17 +6916,17 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  * BASICS
  *
  * The purpose of load-balancing is to achieve the same basic fairness the
- * per-cpu scheduler provides, namely provide a proportional amount of compute
+ * per-CPU scheduler provides, namely provide a proportional amount of compute
  * time to each task. This is expressed in the following equation:
  *
  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
  *
- * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
+ * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
  * W_i,0 is defined as:
  *
  *   W_i,0 = \Sum_j w_i,j                                             (2)
  *
- * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
+ * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
  * is derived from the nice value as per sched_prio_to_weight[].
  *
  * The weight average is an exponential decay average of the instantaneous
@@ -6936,7 +6934,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  *
  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
  *
- * C_i is the compute capacity of cpu i, typically it is the
+ * C_i is the compute capacity of CPU i, typically it is the
  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  * can also include other factors [XXX].
  *
@@ -6957,11 +6955,11 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  * SCHED DOMAINS
  *
  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
- * for all i,j solution, we create a tree of cpus that follows the hardware
+ * for all i,j solution, we create a tree of CPUs that follows the hardware
  * topology where each level pairs two lower groups (or better). This results
- * in O(log n) layers. Furthermore we reduce the number of cpus going up the
+ * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
  * tree to only the first of the previous level and we decrease the frequency
- * of load-balance at each level inv. proportional to the number of cpus in
+ * of load-balance at each level inv. proportional to the number of CPUs in
  * the groups.
  *
  * This yields:
@@ -6970,7 +6968,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
  *     i = 0      2^i   2^i
  *                               `- size of each group
- *         |         |     `- number of cpus doing load-balance
+ *         |         |     `- number of CPUs doing load-balance
  *         |         `- freq
  *         `- sum over all levels
  *
@@ -6978,7 +6976,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  * this makes (5) the runtime complexity of the balancer.
  *
  * An important property here is that each CPU is still (indirectly) connected
- * to every other cpu in at most O(log n) steps:
+ * to every other CPU in at most O(log n) steps:
  *
  * The adjacency matrix of the resulting graph is given by:
  *
@@ -6990,7 +6988,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  *
  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
  *
- * Showing there's indeed a path between every cpu in at most O(log n) steps.
+ * Showing there's indeed a path between every CPU in at most O(log n) steps.
  * The task movement gives a factor of O(m), giving a convergence complexity
  * of:
  *
@@ -7000,7 +6998,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  * WORK CONSERVING
  *
  * In order to avoid CPUs going idle while there's still work to do, new idle
- * balancing is more aggressive and has the newly idle cpu iterate up the domain
+ * balancing is more aggressive and has the newly idle CPU iterate up the domain
  * tree itself instead of relying on other CPUs to bring it work.
  *
  * This adds some complexity to both (5) and (8) but it reduces the total idle
@@ -7021,7 +7019,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
  *
  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
  *
- * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
+ * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
  *
  * The big problem is S_k, its a global sum needed to compute a local (W_i)
  * property.
@@ -7185,7 +7183,7 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
 		env->flags |= LBF_SOME_PINNED;
 
 		/*
-		 * Remember if this task can be migrated to any other cpu in
+		 * Remember if this task can be migrated to any other CPU in
 		 * our sched_group. We may want to revisit it if we couldn't
 		 * meet load balance goals by pulling other tasks on src_cpu.
 		 *
@@ -7195,7 +7193,7 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
 			return 0;
 
-		/* Prevent to re-select dst_cpu via env's cpus */
+		/* Prevent to re-select dst_cpu via env's CPUs: */
 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
 				env->flags |= LBF_DST_PINNED;
@@ -7769,8 +7767,8 @@ check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  * Group imbalance indicates (and tries to solve) the problem where balancing
  * groups is inadequate due to ->cpus_allowed constraints.
  *
- * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
- * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
+ * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
+ * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
  * Something like:
  *
  *	{ 0 1 2 3 } { 4 5 6 7 }
@@ -7778,7 +7776,7 @@ check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
  *
  * If we were to balance group-wise we'd place two tasks in the first group and
  * two tasks in the second group. Clearly this is undesired as it will overload
- * cpu 3 and leave one of the cpus in the second group unused.
+ * cpu 3 and leave one of the CPUs in the second group unused.
  *
  * The current solution to this issue is detecting the skew in the first group
  * by noticing the lower domain failed to reach balance and had difficulty
@@ -7891,7 +7889,7 @@ static inline void update_sg_lb_stats(struct lb_env *env,
 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
 		struct rq *rq = cpu_rq(i);
 
-		/* Bias balancing toward cpus of our domain */
+		/* Bias balancing toward CPUs of our domain: */
 		if (local_group)
 			load = target_load(i, load_idx);
 		else
@@ -7977,7 +7975,7 @@ static bool update_sd_pick_busiest(struct lb_env *env,
 	if (!(env->sd->flags & SD_ASYM_PACKING))
 		return true;
 
-	/* No ASYM_PACKING if target cpu is already busy */
+	/* No ASYM_PACKING if target CPU is already busy */
 	if (env->idle == CPU_NOT_IDLE)
 		return true;
 	/*
@@ -7990,7 +7988,7 @@ static bool update_sd_pick_busiest(struct lb_env *env,
 		if (!sds->busiest)
 			return true;
 
-		/* Prefer to move from lowest priority cpu's work */
+		/* Prefer to move from lowest priority CPU's work */
 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
 				      sg->asym_prefer_cpu))
 			return true;
@@ -8243,7 +8241,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
 	if (busiest->group_type == group_imbalanced) {
 		/*
 		 * In the group_imb case we cannot rely on group-wide averages
-		 * to ensure cpu-load equilibrium, look at wider averages. XXX
+		 * to ensure CPU-load equilibrium, look at wider averages. XXX
 		 */
 		busiest->load_per_task =
 			min(busiest->load_per_task, sds->avg_load);
@@ -8262,7 +8260,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
 	}
 
 	/*
-	 * If there aren't any idle cpus, avoid creating some.
+	 * If there aren't any idle CPUs, avoid creating some.
 	 */
 	if (busiest->group_type == group_overloaded &&
 	    local->group_type   == group_overloaded) {
@@ -8276,9 +8274,9 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
 	}
 
 	/*
-	 * We're trying to get all the cpus to the average_load, so we don't
+	 * We're trying to get all the CPUs to the average_load, so we don't
 	 * want to push ourselves above the average load, nor do we wish to
-	 * reduce the max loaded cpu below the average load. At the same time,
+	 * reduce the max loaded CPU below the average load. At the same time,
 	 * we also don't want to reduce the group load below the group
 	 * capacity. Thus we look for the minimum possible imbalance.
 	 */
@@ -8372,9 +8370,9 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
 
 	if (env->idle == CPU_IDLE) {
 		/*
-		 * This cpu is idle. If the busiest group is not overloaded
+		 * This CPU is idle. If the busiest group is not overloaded
 		 * and there is no imbalance between this and busiest group
-		 * wrt idle cpus, it is balanced. The imbalance becomes
+		 * wrt idle CPUs, it is balanced. The imbalance becomes
 		 * significant if the diff is greater than 1 otherwise we
 		 * might end up to just move the imbalance on another group
 		 */
@@ -8402,7 +8400,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
 }
 
 /*
- * find_busiest_queue - find the busiest runqueue among the cpus in group.
+ * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
  */
 static struct rq *find_busiest_queue(struct lb_env *env,
 				     struct sched_group *group)
@@ -8446,7 +8444,7 @@ static struct rq *find_busiest_queue(struct lb_env *env,
 
 		/*
 		 * When comparing with imbalance, use weighted_cpuload()
-		 * which is not scaled with the cpu capacity.
+		 * which is not scaled with the CPU capacity.
 		 */
 
 		if (rq->nr_running == 1 && wl > env->imbalance &&
@@ -8454,9 +8452,9 @@ static struct rq *find_busiest_queue(struct lb_env *env,
 			continue;
 
 		/*
-		 * For the load comparisons with the other cpu's, consider
-		 * the weighted_cpuload() scaled with the cpu capacity, so
-		 * that the load can be moved away from the cpu that is
+		 * For the load comparisons with the other CPU's, consider
+		 * the weighted_cpuload() scaled with the CPU capacity, so
+		 * that the load can be moved away from the CPU that is
 		 * potentially running at a lower capacity.
 		 *
 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
@@ -8527,13 +8525,13 @@ static int should_we_balance(struct lb_env *env)
 		return 0;
 
 	/*
-	 * In the newly idle case, we will allow all the cpu's
+	 * In the newly idle case, we will allow all the CPUs
 	 * to do the newly idle load balance.
 	 */
 	if (env->idle == CPU_NEWLY_IDLE)
 		return 1;
 
-	/* Try to find first idle cpu */
+	/* Try to find first idle CPU */
 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
 		if (!idle_cpu(cpu))
 			continue;
@@ -8546,7 +8544,7 @@ static int should_we_balance(struct lb_env *env)
 		balance_cpu = group_balance_cpu(sg);
 
 	/*
-	 * First idle cpu or the first cpu(busiest) in this sched group
+	 * First idle CPU or the first CPU(busiest) in this sched group
 	 * is eligible for doing load balancing at this and above domains.
 	 */
 	return balance_cpu == env->dst_cpu;
@@ -8655,7 +8653,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
 		 * us and move them to an alternate dst_cpu in our sched_group
 		 * where they can run. The upper limit on how many times we
-		 * iterate on same src_cpu is dependent on number of cpus in our
+		 * iterate on same src_cpu is dependent on number of CPUs in our
 		 * sched_group.
 		 *
 		 * This changes load balance semantics a bit on who can move
@@ -8672,7 +8670,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
 		 */
 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
 
-			/* Prevent to re-select dst_cpu via env's cpus */
+			/* Prevent to re-select dst_cpu via env's CPUs */
 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
 
 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
@@ -8734,9 +8732,10 @@ static int load_balance(int this_cpu, struct rq *this_rq,
 
 			raw_spin_lock_irqsave(&busiest->lock, flags);
 
-			/* don't kick the active_load_balance_cpu_stop,
-			 * if the curr task on busiest cpu can't be
-			 * moved to this_cpu
+			/*
+			 * Don't kick the active_load_balance_cpu_stop,
+			 * if the curr task on busiest CPU can't be
+			 * moved to this_cpu:
 			 */
 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
 				raw_spin_unlock_irqrestore(&busiest->lock,
@@ -8962,7 +8961,7 @@ static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
 }
 
 /*
- * active_load_balance_cpu_stop is run by cpu stopper. It pushes
+ * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
  * running tasks off the busiest CPU onto idle CPUs. It requires at
  * least 1 task to be running on each physical CPU where possible, and
  * avoids physical / logical imbalances.
@@ -8986,7 +8985,7 @@ static int active_load_balance_cpu_stop(void *data)
 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
 		goto out_unlock;
 
-	/* make sure the requested cpu hasn't gone down in the meantime */
+	/* Make sure the requested CPU hasn't gone down in the meantime: */
 	if (unlikely(busiest_cpu != smp_processor_id() ||
 		     !busiest_rq->active_balance))
 		goto out_unlock;
@@ -8998,7 +8997,7 @@ static int active_load_balance_cpu_stop(void *data)
 	/*
 	 * This condition is "impossible", if it occurs
 	 * we need to fix it. Originally reported by
-	 * Bjorn Helgaas on a 128-cpu setup.
+	 * Bjorn Helgaas on a 128-CPU setup.
 	 */
 	BUG_ON(busiest_rq == target_rq);
 
@@ -9100,7 +9099,7 @@ static void nohz_balancer_kick(void)
 		return;
 	/*
 	 * Use smp_send_reschedule() instead of resched_cpu().
-	 * This way we generate a sched IPI on the target cpu which
+	 * This way we generate a sched IPI on the target CPU which
 	 * is idle. And the softirq performing nohz idle load balance
 	 * will be run before returning from the IPI.
 	 */
@@ -9157,14 +9156,12 @@ void set_cpu_sd_state_idle(void)
 }
 
 /*
- * This routine will record that the cpu is going idle with tick stopped.
+ * This routine will record that the CPU is going idle with tick stopped.
  * This info will be used in performing idle load balancing in the future.
  */
 void nohz_balance_enter_idle(int cpu)
 {
-	/*
-	 * If this cpu is going down, then nothing needs to be done.
-	 */
+	/* If this CPU is going down, then nothing needs to be done: */
 	if (!cpu_active(cpu))
 		return;
 
@@ -9175,9 +9172,7 @@ void nohz_balance_enter_idle(int cpu)
 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
 		return;
 
-	/*
-	 * If we're a completely isolated CPU, we don't play.
-	 */
+	/* If we're a completely isolated CPU, we don't play: */
 	if (on_null_domain(cpu_rq(cpu)))
 		return;
 
@@ -9286,7 +9281,7 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
 
 	/*
 	 * next_balance will be updated only when there is a need.
-	 * When the cpu is attached to null domain for ex, it will not be
+	 * When the CPU is attached to null domain for ex, it will not be
 	 * updated.
 	 */
 	if (likely(update_next_balance)) {
@@ -9310,7 +9305,7 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
 #ifdef CONFIG_NO_HZ_COMMON
 /*
  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
- * rebalancing for all the cpus for whom scheduler ticks are stopped.
+ * rebalancing for all the CPUs for whom scheduler ticks are stopped.
  */
 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 {
@@ -9330,8 +9325,8 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 			continue;
 
 		/*
-		 * If this cpu gets work to do, stop the load balancing
-		 * work being done for other cpus. Next load
+		 * If this CPU gets work to do, stop the load balancing
+		 * work being done for other CPUs. Next load
 		 * balancing owner will pick it up.
 		 */
 		if (need_resched())
@@ -9373,13 +9368,13 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
 
 /*
  * Current heuristic for kicking the idle load balancer in the presence
- * of an idle cpu in the system.
+ * of an idle CPU in the system.
  *   - This rq has more than one task.
  *   - This rq has at least one CFS task and the capacity of the CPU is
  *     significantly reduced because of RT tasks or IRQs.
- *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
- *     multiple busy cpu.
- *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
+ *   - At parent of LLC scheduler domain level, this CPU's scheduler group has
+ *     multiple busy CPUs.
+ *   - For SD_ASYM_PACKING, if the lower numbered CPU's in the scheduler
  *     domain span are idle.
  */
 static inline bool nohz_kick_needed(struct rq *rq)
@@ -9469,10 +9464,10 @@ static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
 						CPU_IDLE : CPU_NOT_IDLE;
 
 	/*
-	 * If this cpu has a pending nohz_balance_kick, then do the
-	 * balancing on behalf of the other idle cpus whose ticks are
+	 * If this CPU has a pending nohz_balance_kick, then do the
+	 * balancing on behalf of the other idle CPUs whose ticks are
 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
-	 * give the idle cpus a chance to load balance. Else we may
+	 * give the idle CPUs a chance to load balance. Else we may
 	 * load balance only within the local sched_domain hierarchy
 	 * and abort nohz_idle_balance altogether if we pull some load.
 	 */
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 7dae9eb..343d25f 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -1,5 +1,5 @@
 /*
- * Generic entry point for the idle threads
+ * Generic entry points for the idle threads
  */
 #include <linux/sched.h>
 #include <linux/sched/idle.h>
@@ -332,8 +332,8 @@ void cpu_startup_entry(enum cpuhp_state state)
 {
 	/*
 	 * This #ifdef needs to die, but it's too late in the cycle to
-	 * make this generic (arm and sh have never invoked the canary
-	 * init for the non boot cpus!). Will be fixed in 3.11
+	 * make this generic (ARM and SH have never invoked the canary
+	 * init for the non boot CPUs!). Will be fixed in 3.11
 	 */
 #ifdef CONFIG_X86
 	/*
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c
index 48b8a83..ec73680 100644
--- a/kernel/sched/idle_task.c
+++ b/kernel/sched/idle_task.c
@@ -14,7 +14,7 @@ select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags)
 {
 	return task_cpu(p); /* IDLE tasks as never migrated */
 }
-#endif /* CONFIG_SMP */
+#endif
 
 /*
  * Idle tasks are unconditionally rescheduled:
@@ -30,6 +30,7 @@ pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf
 	put_prev_task(rq, prev);
 	update_idle_core(rq);
 	schedstat_inc(rq->sched_goidle);
+
 	return rq->idle;
 }
 
diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
index 39f340d..aad5f48 100644
--- a/kernel/sched/isolation.c
+++ b/kernel/sched/isolation.c
@@ -6,13 +6,13 @@
  * Copyright (C) 2017-2018 SUSE, Frederic Weisbecker
  *
  */
-
 #include <linux/sched/isolation.h>
 #include <linux/tick.h>
 #include <linux/init.h>
 #include <linux/kernel.h>
 #include <linux/static_key.h>
 #include <linux/ctype.h>
+
 #include "sched.h"
 
 DEFINE_STATIC_KEY_FALSE(housekeeping_overriden);
diff --git a/kernel/sched/loadavg.c b/kernel/sched/loadavg.c
index 89a989e..a398e7e 100644
--- a/kernel/sched/loadavg.c
+++ b/kernel/sched/loadavg.c
@@ -32,29 +32,29 @@
  * Due to a number of reasons the above turns in the mess below:
  *
  *  - for_each_possible_cpu() is prohibitively expensive on machines with
- *    serious number of cpus, therefore we need to take a distributed approach
+ *    serious number of CPUs, therefore we need to take a distributed approach
  *    to calculating nr_active.
  *
  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  *
  *    So assuming nr_active := 0 when we start out -- true per definition, we
- *    can simply take per-cpu deltas and fold those into a global accumulate
+ *    can simply take per-CPU deltas and fold those into a global accumulate
  *    to obtain the same result. See calc_load_fold_active().
  *
- *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
+ *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
  *    across the machine, we assume 10 ticks is sufficient time for every
- *    cpu to have completed this task.
+ *    CPU to have completed this task.
  *
  *    This places an upper-bound on the IRQ-off latency of the machine. Then
  *    again, being late doesn't loose the delta, just wrecks the sample.
  *
- *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
- *    this would add another cross-cpu cacheline miss and atomic operation
- *    to the wakeup path. Instead we increment on whatever cpu the task ran
- *    when it went into uninterruptible state and decrement on whatever cpu
+ *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
+ *    this would add another cross-CPU cacheline miss and atomic operation
+ *    to the wakeup path. Instead we increment on whatever CPU the task ran
+ *    when it went into uninterruptible state and decrement on whatever CPU
  *    did the wakeup. This means that only the sum of nr_uninterruptible over
- *    all cpus yields the correct result.
+ *    all CPUs yields the correct result.
  *
  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  */
@@ -115,11 +115,11 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active)
  * Handle NO_HZ for the global load-average.
  *
  * Since the above described distributed algorithm to compute the global
- * load-average relies on per-cpu sampling from the tick, it is affected by
+ * load-average relies on per-CPU sampling from the tick, it is affected by
  * NO_HZ.
  *
  * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
- * entering NO_HZ state such that we can include this as an 'extra' cpu delta
+ * entering NO_HZ state such that we can include this as an 'extra' CPU delta
  * when we read the global state.
  *
  * Obviously reality has to ruin such a delightfully simple scheme:
@@ -146,9 +146,9 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active)
  *    busy state.
  *
  *    This is solved by pushing the window forward, and thus skipping the
- *    sample, for this cpu (effectively using the NO_HZ-delta for this cpu which
+ *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
  *    was in effect at the time the window opened). This also solves the issue
- *    of having to deal with a cpu having been in NO_HZ for multiple LOAD_FREQ
+ *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
  *    intervals.
  *
  * When making the ILB scale, we should try to pull this in as well.
@@ -299,7 +299,7 @@ calc_load_n(unsigned long load, unsigned long exp,
 }
 
 /*
- * NO_HZ can leave us missing all per-cpu ticks calling
+ * NO_HZ can leave us missing all per-CPU ticks calling
  * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
  * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
  * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
@@ -363,7 +363,7 @@ void calc_global_load(unsigned long ticks)
 		return;
 
 	/*
-	 * Fold the 'old' NO_HZ-delta to include all NO_HZ cpus.
+	 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
 	 */
 	delta = calc_load_nohz_fold();
 	if (delta)
diff --git a/kernel/sched/membarrier.c b/kernel/sched/membarrier.c
index 5d07626..2c6ae24 100644
--- a/kernel/sched/membarrier.c
+++ b/kernel/sched/membarrier.c
@@ -27,18 +27,18 @@
  * except MEMBARRIER_CMD_QUERY.
  */
 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
-#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	\
-	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
+#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\
+	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\
 	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
 #else
 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0
 #endif
 
-#define MEMBARRIER_CMD_BITMASK	\
-	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
-	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
-	| MEMBARRIER_CMD_PRIVATE_EXPEDITED	\
-	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED	\
+#define MEMBARRIER_CMD_BITMASK						\
+	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\
+	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\
+	| MEMBARRIER_CMD_PRIVATE_EXPEDITED				\
+	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\
 	| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK)
 
 static void ipi_mb(void *info)
@@ -85,6 +85,7 @@ static int membarrier_global_expedited(void)
 		 */
 		if (cpu == raw_smp_processor_id())
 			continue;
+
 		rcu_read_lock();
 		p = task_rcu_dereference(&cpu_rq(cpu)->curr);
 		if (p && p->mm && (atomic_read(&p->mm->membarrier_state) &
@@ -188,6 +189,7 @@ static int membarrier_private_expedited(int flags)
 	 * rq->curr modification in scheduler.
 	 */
 	smp_mb();	/* exit from system call is not a mb */
+
 	return 0;
 }
 
@@ -219,6 +221,7 @@ static int membarrier_register_global_expedited(void)
 	}
 	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
 		  &mm->membarrier_state);
+
 	return 0;
 }
 
@@ -253,6 +256,7 @@ static int membarrier_register_private_expedited(int flags)
 		synchronize_sched();
 	}
 	atomic_or(state, &mm->membarrier_state);
+
 	return 0;
 }
 
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index c80563b..e404988 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -1453,9 +1453,9 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
 		return;
 
 	/*
-	 * There appears to be other cpus that can accept
-	 * current and none to run 'p', so lets reschedule
-	 * to try and push current away:
+	 * There appear to be other CPUs that can accept
+	 * the current task but none can run 'p', so lets reschedule
+	 * to try and push the current task away:
 	 */
 	requeue_task_rt(rq, p, 1);
 	resched_curr(rq);
@@ -1596,12 +1596,13 @@ static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
 	if (!task_running(rq, p) &&
 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
 		return 1;
+
 	return 0;
 }
 
 /*
  * Return the highest pushable rq's task, which is suitable to be executed
- * on the cpu, NULL otherwise
+ * on the CPU, NULL otherwise
  */
 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
 {
@@ -1639,11 +1640,11 @@ static int find_lowest_rq(struct task_struct *task)
 		return -1; /* No targets found */
 
 	/*
-	 * At this point we have built a mask of cpus representing the
+	 * At this point we have built a mask of CPUs representing the
 	 * lowest priority tasks in the system.  Now we want to elect
 	 * the best one based on our affinity and topology.
 	 *
-	 * We prioritize the last cpu that the task executed on since
+	 * We prioritize the last CPU that the task executed on since
 	 * it is most likely cache-hot in that location.
 	 */
 	if (cpumask_test_cpu(cpu, lowest_mask))
@@ -1651,7 +1652,7 @@ static int find_lowest_rq(struct task_struct *task)
 
 	/*
 	 * Otherwise, we consult the sched_domains span maps to figure
-	 * out which cpu is logically closest to our hot cache data.
+	 * out which CPU is logically closest to our hot cache data.
 	 */
 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
@@ -1692,6 +1693,7 @@ static int find_lowest_rq(struct task_struct *task)
 	cpu = cpumask_any(lowest_mask);
 	if (cpu < nr_cpu_ids)
 		return cpu;
+
 	return -1;
 }
 
@@ -1827,7 +1829,7 @@ static int push_rt_task(struct rq *rq)
 			 * The task hasn't migrated, and is still the next
 			 * eligible task, but we failed to find a run-queue
 			 * to push it to.  Do not retry in this case, since
-			 * other cpus will pull from us when ready.
+			 * other CPUs will pull from us when ready.
 			 */
 			goto out;
 		}
@@ -1919,7 +1921,7 @@ static int rto_next_cpu(struct root_domain *rd)
 	 * rt_next_cpu() will simply return the first CPU found in
 	 * the rto_mask.
 	 *
-	 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
+	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
 	 * will return the next CPU found in the rto_mask.
 	 *
 	 * If there are no more CPUs left in the rto_mask, then a check is made
@@ -1980,7 +1982,7 @@ static void tell_cpu_to_push(struct rq *rq)
 	raw_spin_lock(&rq->rd->rto_lock);
 
 	/*
-	 * The rto_cpu is updated under the lock, if it has a valid cpu
+	 * The rto_cpu is updated under the lock, if it has a valid CPU
 	 * then the IPI is still running and will continue due to the
 	 * update to loop_next, and nothing needs to be done here.
 	 * Otherwise it is finishing up and an ipi needs to be sent.
@@ -2105,7 +2107,7 @@ static void pull_rt_task(struct rq *this_rq)
 
 			/*
 			 * There's a chance that p is higher in priority
-			 * than what's currently running on its cpu.
+			 * than what's currently running on its CPU.
 			 * This is just that p is wakeing up and hasn't
 			 * had a chance to schedule. We only pull
 			 * p if it is lower in priority than the
@@ -2693,6 +2695,7 @@ int sched_rr_handler(struct ctl_table *table, int write,
 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
 	}
 	mutex_unlock(&mutex);
+
 	return ret;
 }
 
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index dc6c8b5..bd1461a 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -1,5 +1,7 @@
 /* SPDX-License-Identifier: GPL-2.0 */
-
+/*
+ * Scheduler internal types and methods:
+ */
 #include <linux/sched.h>
 #include <linux/sched/autogroup.h>
 #include <linux/sched/sysctl.h>
@@ -79,11 +81,11 @@ static inline void cpu_load_update_active(struct rq *this_rq) { }
  * and does not change the user-interface for setting shares/weights.
  *
  * We increase resolution only if we have enough bits to allow this increased
- * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
- * pretty high and the returns do not justify the increased costs.
+ * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
+ * are pretty high and the returns do not justify the increased costs.
  *
- * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
- * increase coverage and consistency always enable it on 64bit platforms.
+ * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
+ * increase coverage and consistency always enable it on 64-bit platforms.
  */
 #ifdef CONFIG_64BIT
 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
@@ -111,16 +113,12 @@ static inline void cpu_load_update_active(struct rq *this_rq) { }
  * 10 -> just above 1us
  * 9  -> just above 0.5us
  */
-#define DL_SCALE (10)
+#define DL_SCALE		10
 
 /*
- * These are the 'tuning knobs' of the scheduler:
+ * Single value that denotes runtime == period, ie unlimited time.
  */
-
-/*
- * single value that denotes runtime == period, ie unlimited time.
- */
-#define RUNTIME_INF	((u64)~0ULL)
+#define RUNTIME_INF		((u64)~0ULL)
 
 static inline int idle_policy(int policy)
 {
@@ -235,9 +233,9 @@ void __dl_clear_params(struct task_struct *p);
  * control.
  */
 struct dl_bandwidth {
-	raw_spinlock_t dl_runtime_lock;
-	u64 dl_runtime;
-	u64 dl_period;
+	raw_spinlock_t		dl_runtime_lock;
+	u64			dl_runtime;
+	u64			dl_period;
 };
 
 static inline int dl_bandwidth_enabled(void)
@@ -246,8 +244,9 @@ static inline int dl_bandwidth_enabled(void)
 }
 
 struct dl_bw {
-	raw_spinlock_t lock;
-	u64 bw, total_bw;
+	raw_spinlock_t		lock;
+	u64			bw;
+	u64			total_bw;
 };
 
 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
@@ -273,20 +272,17 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 }
 
-void dl_change_utilization(struct task_struct *p, u64 new_bw);
+extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
 extern void init_dl_bw(struct dl_bw *dl_b);
-extern int sched_dl_global_validate(void);
+extern int  sched_dl_global_validate(void);
 extern void sched_dl_do_global(void);
-extern int sched_dl_overflow(struct task_struct *p, int policy,
-			     const struct sched_attr *attr);
+extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 extern bool __checkparam_dl(const struct sched_attr *attr);
 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
-extern int dl_task_can_attach(struct task_struct *p,
-			      const struct cpumask *cs_cpus_allowed);
-extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
-					const struct cpumask *trial);
+extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
+extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 extern bool dl_cpu_busy(unsigned int cpu);
 
 #ifdef CONFIG_CGROUP_SCHED
@@ -300,32 +296,36 @@ extern struct list_head task_groups;
 
 struct cfs_bandwidth {
 #ifdef CONFIG_CFS_BANDWIDTH
-	raw_spinlock_t lock;
-	ktime_t period;
-	u64 quota, runtime;
-	s64 hierarchical_quota;
-	u64 runtime_expires;
+	raw_spinlock_t		lock;
+	ktime_t			period;
+	u64			quota;
+	u64			runtime;
+	s64			hierarchical_quota;
+	u64			runtime_expires;
 
-	int idle, period_active;
-	struct hrtimer period_timer, slack_timer;
-	struct list_head throttled_cfs_rq;
+	int			idle;
+	int			period_active;
+	struct hrtimer		period_timer;
+	struct hrtimer		slack_timer;
+	struct list_head	throttled_cfs_rq;
 
-	/* statistics */
-	int nr_periods, nr_throttled;
-	u64 throttled_time;
+	/* Statistics: */
+	int			nr_periods;
+	int			nr_throttled;
+	u64			throttled_time;
 #endif
 };
 
-/* task group related information */
+/* Task group related information */
 struct task_group {
 	struct cgroup_subsys_state css;
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
-	/* schedulable entities of this group on each cpu */
-	struct sched_entity **se;
-	/* runqueue "owned" by this group on each cpu */
-	struct cfs_rq **cfs_rq;
-	unsigned long shares;
+	/* schedulable entities of this group on each CPU */
+	struct sched_entity	**se;
+	/* runqueue "owned" by this group on each CPU */
+	struct cfs_rq		**cfs_rq;
+	unsigned long		shares;
 
 #ifdef	CONFIG_SMP
 	/*
@@ -333,29 +333,29 @@ struct task_group {
 	 * it in its own cacheline separated from the fields above which
 	 * will also be accessed at each tick.
 	 */
-	atomic_long_t load_avg ____cacheline_aligned;
+	atomic_long_t		load_avg ____cacheline_aligned;
 #endif
 #endif
 
 #ifdef CONFIG_RT_GROUP_SCHED
-	struct sched_rt_entity **rt_se;
-	struct rt_rq **rt_rq;
+	struct sched_rt_entity	**rt_se;
+	struct rt_rq		**rt_rq;
 
-	struct rt_bandwidth rt_bandwidth;
+	struct rt_bandwidth	rt_bandwidth;
 #endif
 
-	struct rcu_head rcu;
-	struct list_head list;
+	struct rcu_head		rcu;
+	struct list_head	list;
 
-	struct task_group *parent;
-	struct list_head siblings;
-	struct list_head children;
+	struct task_group	*parent;
+	struct list_head	siblings;
+	struct list_head	children;
 
 #ifdef CONFIG_SCHED_AUTOGROUP
-	struct autogroup *autogroup;
+	struct autogroup	*autogroup;
 #endif
 
-	struct cfs_bandwidth cfs_bandwidth;
+	struct cfs_bandwidth	cfs_bandwidth;
 };
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
@@ -369,8 +369,8 @@ struct task_group {
  * (The default weight is 1024 - so there's no practical
  *  limitation from this.)
  */
-#define MIN_SHARES	(1UL <<  1)
-#define MAX_SHARES	(1UL << 18)
+#define MIN_SHARES		(1UL <<  1)
+#define MAX_SHARES		(1UL << 18)
 #endif
 
 typedef int (*tg_visitor)(struct task_group *, void *);
@@ -443,35 +443,39 @@ struct cfs_bandwidth { };
 
 /* CFS-related fields in a runqueue */
 struct cfs_rq {
-	struct load_weight load;
-	unsigned long runnable_weight;
-	unsigned int nr_running, h_nr_running;
+	struct load_weight	load;
+	unsigned long		runnable_weight;
+	unsigned int		nr_running;
+	unsigned int		h_nr_running;
 
-	u64 exec_clock;
-	u64 min_vruntime;
+	u64			exec_clock;
+	u64			min_vruntime;
 #ifndef CONFIG_64BIT
-	u64 min_vruntime_copy;
+	u64			min_vruntime_copy;
 #endif
 
-	struct rb_root_cached tasks_timeline;
+	struct rb_root_cached	tasks_timeline;
 
 	/*
 	 * 'curr' points to currently running entity on this cfs_rq.
 	 * It is set to NULL otherwise (i.e when none are currently running).
 	 */
-	struct sched_entity *curr, *next, *last, *skip;
+	struct sched_entity	*curr;
+	struct sched_entity	*next;
+	struct sched_entity	*last;
+	struct sched_entity	*skip;
 
 #ifdef	CONFIG_SCHED_DEBUG
-	unsigned int nr_spread_over;
+	unsigned int		nr_spread_over;
 #endif
 
 #ifdef CONFIG_SMP
 	/*
 	 * CFS load tracking
 	 */
-	struct sched_avg avg;
+	struct sched_avg	avg;
 #ifndef CONFIG_64BIT
-	u64 load_last_update_time_copy;
+	u64			load_last_update_time_copy;
 #endif
 	struct {
 		raw_spinlock_t	lock ____cacheline_aligned;
@@ -482,9 +486,9 @@ struct cfs_rq {
 	} removed;
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
-	unsigned long tg_load_avg_contrib;
-	long propagate;
-	long prop_runnable_sum;
+	unsigned long		tg_load_avg_contrib;
+	long			propagate;
+	long			prop_runnable_sum;
 
 	/*
 	 *   h_load = weight * f(tg)
@@ -492,36 +496,38 @@ struct cfs_rq {
 	 * Where f(tg) is the recursive weight fraction assigned to
 	 * this group.
 	 */
-	unsigned long h_load;
-	u64 last_h_load_update;
-	struct sched_entity *h_load_next;
+	unsigned long		h_load;
+	u64			last_h_load_update;
+	struct sched_entity	*h_load_next;
 #endif /* CONFIG_FAIR_GROUP_SCHED */
 #endif /* CONFIG_SMP */
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
-	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
+	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 
 	/*
 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 	 * (like users, containers etc.)
 	 *
-	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
-	 * list is used during load balance.
+	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
+	 * This list is used during load balance.
 	 */
-	int on_list;
-	struct list_head leaf_cfs_rq_list;
-	struct task_group *tg;	/* group that "owns" this runqueue */
+	int			on_list;
+	struct list_head	leaf_cfs_rq_list;
+	struct task_group	*tg;	/* group that "owns" this runqueue */
 
 #ifdef CONFIG_CFS_BANDWIDTH
-	int runtime_enabled;
-	u64 runtime_expires;
-	s64 runtime_remaining;
+	int			runtime_enabled;
+	u64			runtime_expires;
+	s64			runtime_remaining;
 
-	u64 throttled_clock, throttled_clock_task;
-	u64 throttled_clock_task_time;
-	int throttled, throttle_count;
-	struct list_head throttled_list;
+	u64			throttled_clock;
+	u64			throttled_clock_task;
+	u64			throttled_clock_task_time;
+	int			throttled;
+	int			throttle_count;
+	struct list_head	throttled_list;
 #endif /* CONFIG_CFS_BANDWIDTH */
 #endif /* CONFIG_FAIR_GROUP_SCHED */
 };
@@ -538,45 +544,45 @@ static inline int rt_bandwidth_enabled(void)
 
 /* Real-Time classes' related field in a runqueue: */
 struct rt_rq {
-	struct rt_prio_array active;
-	unsigned int rt_nr_running;
-	unsigned int rr_nr_running;
+	struct rt_prio_array	active;
+	unsigned int		rt_nr_running;
+	unsigned int		rr_nr_running;
 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 	struct {
-		int curr; /* highest queued rt task prio */
+		int		curr; /* highest queued rt task prio */
 #ifdef CONFIG_SMP
-		int next; /* next highest */
+		int		next; /* next highest */
 #endif
 	} highest_prio;
 #endif
 #ifdef CONFIG_SMP
-	unsigned long rt_nr_migratory;
-	unsigned long rt_nr_total;
-	int overloaded;
-	struct plist_head pushable_tasks;
+	unsigned long		rt_nr_migratory;
+	unsigned long		rt_nr_total;
+	int			overloaded;
+	struct plist_head	pushable_tasks;
 #endif /* CONFIG_SMP */
-	int rt_queued;
+	int			rt_queued;
 
-	int rt_throttled;
-	u64 rt_time;
-	u64 rt_runtime;
+	int			rt_throttled;
+	u64			rt_time;
+	u64			rt_runtime;
 	/* Nests inside the rq lock: */
-	raw_spinlock_t rt_runtime_lock;
+	raw_spinlock_t		rt_runtime_lock;
 
 #ifdef CONFIG_RT_GROUP_SCHED
-	unsigned long rt_nr_boosted;
+	unsigned long		rt_nr_boosted;
 
-	struct rq *rq;
-	struct task_group *tg;
+	struct rq		*rq;
+	struct task_group	*tg;
 #endif
 };
 
 /* Deadline class' related fields in a runqueue */
 struct dl_rq {
 	/* runqueue is an rbtree, ordered by deadline */
-	struct rb_root_cached root;
+	struct rb_root_cached	root;
 
-	unsigned long dl_nr_running;
+	unsigned long		dl_nr_running;
 
 #ifdef CONFIG_SMP
 	/*
@@ -586,28 +592,28 @@ struct dl_rq {
 	 * should migrate somewhere else.
 	 */
 	struct {
-		u64 curr;
-		u64 next;
+		u64		curr;
+		u64		next;
 	} earliest_dl;
 
-	unsigned long dl_nr_migratory;
-	int overloaded;
+	unsigned long		dl_nr_migratory;
+	int			overloaded;
 
 	/*
 	 * Tasks on this rq that can be pushed away. They are kept in
 	 * an rb-tree, ordered by tasks' deadlines, with caching
 	 * of the leftmost (earliest deadline) element.
 	 */
-	struct rb_root_cached pushable_dl_tasks_root;
+	struct rb_root_cached	pushable_dl_tasks_root;
 #else
-	struct dl_bw dl_bw;
+	struct dl_bw		dl_bw;
 #endif
 	/*
 	 * "Active utilization" for this runqueue: increased when a
 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 	 * task blocks
 	 */
-	u64 running_bw;
+	u64			running_bw;
 
 	/*
 	 * Utilization of the tasks "assigned" to this runqueue (including
@@ -618,14 +624,14 @@ struct dl_rq {
 	 * This is needed to compute the "inactive utilization" for the
 	 * runqueue (inactive utilization = this_bw - running_bw).
 	 */
-	u64 this_bw;
-	u64 extra_bw;
+	u64			this_bw;
+	u64			extra_bw;
 
 	/*
 	 * Inverse of the fraction of CPU utilization that can be reclaimed
 	 * by the GRUB algorithm.
 	 */
-	u64 bw_ratio;
+	u64			bw_ratio;
 };
 
 #ifdef CONFIG_SMP
@@ -638,51 +644,51 @@ static inline bool sched_asym_prefer(int a, int b)
 /*
  * We add the notion of a root-domain which will be used to define per-domain
  * variables. Each exclusive cpuset essentially defines an island domain by
- * fully partitioning the member cpus from any other cpuset. Whenever a new
+ * fully partitioning the member CPUs from any other cpuset. Whenever a new
  * exclusive cpuset is created, we also create and attach a new root-domain
  * object.
  *
  */
 struct root_domain {
-	atomic_t refcount;
-	atomic_t rto_count;
-	struct rcu_head rcu;
-	cpumask_var_t span;
-	cpumask_var_t online;
+	atomic_t		refcount;
+	atomic_t		rto_count;
+	struct rcu_head		rcu;
+	cpumask_var_t		span;
+	cpumask_var_t		online;
 
 	/* Indicate more than one runnable task for any CPU */
-	bool overload;
+	bool			overload;
 
 	/*
 	 * The bit corresponding to a CPU gets set here if such CPU has more
 	 * than one runnable -deadline task (as it is below for RT tasks).
 	 */
-	cpumask_var_t dlo_mask;
-	atomic_t dlo_count;
-	struct dl_bw dl_bw;
-	struct cpudl cpudl;
+	cpumask_var_t		dlo_mask;
+	atomic_t		dlo_count;
+	struct dl_bw		dl_bw;
+	struct cpudl		cpudl;
 
 #ifdef HAVE_RT_PUSH_IPI
 	/*
 	 * For IPI pull requests, loop across the rto_mask.
 	 */
-	struct irq_work rto_push_work;
-	raw_spinlock_t rto_lock;
+	struct irq_work		rto_push_work;
+	raw_spinlock_t		rto_lock;
 	/* These are only updated and read within rto_lock */
-	int rto_loop;
-	int rto_cpu;
+	int			rto_loop;
+	int			rto_cpu;
 	/* These atomics are updated outside of a lock */
-	atomic_t rto_loop_next;
-	atomic_t rto_loop_start;
+	atomic_t		rto_loop_next;
+	atomic_t		rto_loop_start;
 #endif
 	/*
 	 * The "RT overload" flag: it gets set if a CPU has more than
 	 * one runnable RT task.
 	 */
-	cpumask_var_t rto_mask;
-	struct cpupri cpupri;
+	cpumask_var_t		rto_mask;
+	struct cpupri		cpupri;
 
-	unsigned long max_cpu_capacity;
+	unsigned long		max_cpu_capacity;
 };
 
 extern struct root_domain def_root_domain;
@@ -708,39 +714,39 @@ extern void rto_push_irq_work_func(struct irq_work *work);
  */
 struct rq {
 	/* runqueue lock: */
-	raw_spinlock_t lock;
+	raw_spinlock_t		lock;
 
 	/*
 	 * nr_running and cpu_load should be in the same cacheline because
 	 * remote CPUs use both these fields when doing load calculation.
 	 */
-	unsigned int nr_running;
+	unsigned int		nr_running;
 #ifdef CONFIG_NUMA_BALANCING
-	unsigned int nr_numa_running;
-	unsigned int nr_preferred_running;
+	unsigned int		nr_numa_running;
+	unsigned int		nr_preferred_running;
 #endif
 	#define CPU_LOAD_IDX_MAX 5
-	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
+	unsigned long		cpu_load[CPU_LOAD_IDX_MAX];
 #ifdef CONFIG_NO_HZ_COMMON
 #ifdef CONFIG_SMP
-	unsigned long last_load_update_tick;
+	unsigned long		last_load_update_tick;
 #endif /* CONFIG_SMP */
-	unsigned long nohz_flags;
+	unsigned long		nohz_flags;
 #endif /* CONFIG_NO_HZ_COMMON */
 
-	/* capture load from *all* tasks on this cpu: */
-	struct load_weight load;
-	unsigned long nr_load_updates;
-	u64 nr_switches;
+	/* capture load from *all* tasks on this CPU: */
+	struct load_weight	load;
+	unsigned long		nr_load_updates;
+	u64			nr_switches;
 
-	struct cfs_rq cfs;
-	struct rt_rq rt;
-	struct dl_rq dl;
+	struct cfs_rq		cfs;
+	struct rt_rq		rt;
+	struct dl_rq		dl;
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
-	/* list of leaf cfs_rq on this cpu: */
-	struct list_head leaf_cfs_rq_list;
-	struct list_head *tmp_alone_branch;
+	/* list of leaf cfs_rq on this CPU: */
+	struct list_head	leaf_cfs_rq_list;
+	struct list_head	*tmp_alone_branch;
 #endif /* CONFIG_FAIR_GROUP_SCHED */
 
 	/*
@@ -749,94 +755,98 @@ struct rq {
 	 * one CPU and if it got migrated afterwards it may decrease
 	 * it on another CPU. Always updated under the runqueue lock:
 	 */
-	unsigned long nr_uninterruptible;
+	unsigned long		nr_uninterruptible;
 
-	struct task_struct *curr, *idle, *stop;
-	unsigned long next_balance;
-	struct mm_struct *prev_mm;
+	struct task_struct	*curr;
+	struct task_struct	*idle;
+	struct task_struct	*stop;
+	unsigned long		next_balance;
+	struct mm_struct	*prev_mm;
 
-	unsigned int clock_update_flags;
-	u64 clock;
-	u64 clock_task;
+	unsigned int		clock_update_flags;
+	u64			clock;
+	u64			clock_task;
 
-	atomic_t nr_iowait;
+	atomic_t		nr_iowait;
 
 #ifdef CONFIG_SMP
-	struct root_domain *rd;
-	struct sched_domain *sd;
+	struct root_domain	*rd;
+	struct sched_domain	*sd;
 
-	unsigned long cpu_capacity;
-	unsigned long cpu_capacity_orig;
+	unsigned long		cpu_capacity;
+	unsigned long		cpu_capacity_orig;
 
-	struct callback_head *balance_callback;
+	struct callback_head	*balance_callback;
 
-	unsigned char idle_balance;
+	unsigned char		idle_balance;
+
 	/* For active balancing */
-	int active_balance;
-	int push_cpu;
-	struct cpu_stop_work active_balance_work;
-	/* cpu of this runqueue: */
-	int cpu;
-	int online;
+	int			active_balance;
+	int			push_cpu;
+	struct cpu_stop_work	active_balance_work;
+
+	/* CPU of this runqueue: */
+	int			cpu;
+	int			online;
 
 	struct list_head cfs_tasks;
 
-	u64 rt_avg;
-	u64 age_stamp;
-	u64 idle_stamp;
-	u64 avg_idle;
+	u64			rt_avg;
+	u64			age_stamp;
+	u64			idle_stamp;
+	u64			avg_idle;
 
 	/* This is used to determine avg_idle's max value */
-	u64 max_idle_balance_cost;
+	u64			max_idle_balance_cost;
 #endif
 
 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
-	u64 prev_irq_time;
+	u64			prev_irq_time;
 #endif
 #ifdef CONFIG_PARAVIRT
-	u64 prev_steal_time;
+	u64			prev_steal_time;
 #endif
 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
-	u64 prev_steal_time_rq;
+	u64			prev_steal_time_rq;
 #endif
 
 	/* calc_load related fields */
-	unsigned long calc_load_update;
-	long calc_load_active;
+	unsigned long		calc_load_update;
+	long			calc_load_active;
 
 #ifdef CONFIG_SCHED_HRTICK
 #ifdef CONFIG_SMP
-	int hrtick_csd_pending;
-	call_single_data_t hrtick_csd;
+	int			hrtick_csd_pending;
+	call_single_data_t	hrtick_csd;
 #endif
-	struct hrtimer hrtick_timer;
+	struct hrtimer		hrtick_timer;
 #endif
 
 #ifdef CONFIG_SCHEDSTATS
 	/* latency stats */
-	struct sched_info rq_sched_info;
-	unsigned long long rq_cpu_time;
+	struct sched_info	rq_sched_info;
+	unsigned long long	rq_cpu_time;
 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 
 	/* sys_sched_yield() stats */
-	unsigned int yld_count;
+	unsigned int		yld_count;
 
 	/* schedule() stats */
-	unsigned int sched_count;
-	unsigned int sched_goidle;
+	unsigned int		sched_count;
+	unsigned int		sched_goidle;
 
 	/* try_to_wake_up() stats */
-	unsigned int ttwu_count;
-	unsigned int ttwu_local;
+	unsigned int		ttwu_count;
+	unsigned int		ttwu_local;
 #endif
 
 #ifdef CONFIG_SMP
-	struct llist_head wake_list;
+	struct llist_head	wake_list;
 #endif
 
 #ifdef CONFIG_CPU_IDLE
 	/* Must be inspected within a rcu lock section */
-	struct cpuidle_state *idle_state;
+	struct cpuidle_state	*idle_state;
 #endif
 };
 
@@ -902,9 +912,9 @@ static inline u64 __rq_clock_broken(struct rq *rq)
  * one position though, because the next rq_unpin_lock() will shift it
  * back.
  */
-#define RQCF_REQ_SKIP	0x01
-#define RQCF_ACT_SKIP	0x02
-#define RQCF_UPDATED	0x04
+#define RQCF_REQ_SKIP		0x01
+#define RQCF_ACT_SKIP		0x02
+#define RQCF_UPDATED		0x04
 
 static inline void assert_clock_updated(struct rq *rq)
 {
@@ -1057,12 +1067,12 @@ extern void sched_ttwu_pending(void);
 
 /**
  * highest_flag_domain - Return highest sched_domain containing flag.
- * @cpu:	The cpu whose highest level of sched domain is to
+ * @cpu:	The CPU whose highest level of sched domain is to
  *		be returned.
  * @flag:	The flag to check for the highest sched_domain
- *		for the given cpu.
+ *		for the given CPU.
  *
- * Returns the highest sched_domain of a cpu which contains the given flag.
+ * Returns the highest sched_domain of a CPU which contains the given flag.
  */
 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 {
@@ -1097,30 +1107,30 @@ DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
 struct sched_group_capacity {
-	atomic_t ref;
+	atomic_t		ref;
 	/*
 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
 	 * for a single CPU.
 	 */
-	unsigned long capacity;
-	unsigned long min_capacity; /* Min per-CPU capacity in group */
-	unsigned long next_update;
-	int imbalance; /* XXX unrelated to capacity but shared group state */
+	unsigned long		capacity;
+	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
+	unsigned long		next_update;
+	int			imbalance;		/* XXX unrelated to capacity but shared group state */
 
 #ifdef CONFIG_SCHED_DEBUG
-	int id;
+	int			id;
 #endif
 
-	unsigned long cpumask[0]; /* balance mask */
+	unsigned long		cpumask[0];		/* Balance mask */
 };
 
 struct sched_group {
-	struct sched_group *next;	/* Must be a circular list */
-	atomic_t ref;
+	struct sched_group	*next;			/* Must be a circular list */
+	atomic_t		ref;
 
-	unsigned int group_weight;
+	unsigned int		group_weight;
 	struct sched_group_capacity *sgc;
-	int asym_prefer_cpu;		/* cpu of highest priority in group */
+	int			asym_prefer_cpu;	/* CPU of highest priority in group */
 
 	/*
 	 * The CPUs this group covers.
@@ -1129,7 +1139,7 @@ struct sched_group {
 	 * by attaching extra space to the end of the structure,
 	 * depending on how many CPUs the kernel has booted up with)
 	 */
-	unsigned long cpumask[0];
+	unsigned long		cpumask[0];
 };
 
 static inline struct cpumask *sched_group_span(struct sched_group *sg)
@@ -1146,8 +1156,8 @@ static inline struct cpumask *group_balance_mask(struct sched_group *sg)
 }
 
 /**
- * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
- * @group: The group whose first cpu is to be returned.
+ * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
+ * @group: The group whose first CPU is to be returned.
  */
 static inline unsigned int group_first_cpu(struct sched_group *group)
 {
@@ -1357,9 +1367,9 @@ static inline int task_on_rq_migrating(struct task_struct *p)
 /*
  * wake flags
  */
-#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
-#define WF_FORK		0x02		/* child wakeup after fork */
-#define WF_MIGRATED	0x4		/* internal use, task got migrated */
+#define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
+#define WF_FORK			0x02		/* Child wakeup after fork */
+#define WF_MIGRATED		0x4		/* Internal use, task got migrated */
 
 /*
  * To aid in avoiding the subversion of "niceness" due to uneven distribution
@@ -1370,11 +1380,11 @@ static inline int task_on_rq_migrating(struct task_struct *p)
  * slice expiry etc.
  */
 
-#define WEIGHT_IDLEPRIO                3
-#define WMULT_IDLEPRIO         1431655765
+#define WEIGHT_IDLEPRIO		3
+#define WMULT_IDLEPRIO		1431655765
 
-extern const int sched_prio_to_weight[40];
-extern const u32 sched_prio_to_wmult[40];
+extern const int		sched_prio_to_weight[40];
+extern const u32		sched_prio_to_wmult[40];
 
 /*
  * {de,en}queue flags:
@@ -1396,9 +1406,9 @@ extern const u32 sched_prio_to_wmult[40];
  */
 
 #define DEQUEUE_SLEEP		0x01
-#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
-#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
-#define DEQUEUE_NOCLOCK		0x08 /* matches ENQUEUE_NOCLOCK */
+#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
+#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
+#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
 
 #define ENQUEUE_WAKEUP		0x01
 #define ENQUEUE_RESTORE		0x02
@@ -1420,10 +1430,10 @@ struct sched_class {
 
 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
-	void (*yield_task) (struct rq *rq);
-	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
+	void (*yield_task)   (struct rq *rq);
+	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
 
-	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
+	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
 
 	/*
 	 * It is the responsibility of the pick_next_task() method that will
@@ -1433,16 +1443,16 @@ struct sched_class {
 	 * May return RETRY_TASK when it finds a higher prio class has runnable
 	 * tasks.
 	 */
-	struct task_struct * (*pick_next_task) (struct rq *rq,
-						struct task_struct *prev,
-						struct rq_flags *rf);
-	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
+	struct task_struct * (*pick_next_task)(struct rq *rq,
+					       struct task_struct *prev,
+					       struct rq_flags *rf);
+	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
 
 #ifdef CONFIG_SMP
 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
 	void (*migrate_task_rq)(struct task_struct *p);
 
-	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
+	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
 
 	void (*set_cpus_allowed)(struct task_struct *p,
 				 const struct cpumask *newmask);
@@ -1451,31 +1461,31 @@ struct sched_class {
 	void (*rq_offline)(struct rq *rq);
 #endif
 
-	void (*set_curr_task) (struct rq *rq);
-	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
-	void (*task_fork) (struct task_struct *p);
-	void (*task_dead) (struct task_struct *p);
+	void (*set_curr_task)(struct rq *rq);
+	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
+	void (*task_fork)(struct task_struct *p);
+	void (*task_dead)(struct task_struct *p);
 
 	/*
 	 * The switched_from() call is allowed to drop rq->lock, therefore we
 	 * cannot assume the switched_from/switched_to pair is serliazed by
 	 * rq->lock. They are however serialized by p->pi_lock.
 	 */
-	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
-	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
+	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
+	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
-			     int oldprio);
+			      int oldprio);
 
-	unsigned int (*get_rr_interval) (struct rq *rq,
-					 struct task_struct *task);
+	unsigned int (*get_rr_interval)(struct rq *rq,
+					struct task_struct *task);
 
-	void (*update_curr) (struct rq *rq);
+	void (*update_curr)(struct rq *rq);
 
-#define TASK_SET_GROUP  0
-#define TASK_MOVE_GROUP	1
+#define TASK_SET_GROUP		0
+#define TASK_MOVE_GROUP		1
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
-	void (*task_change_group) (struct task_struct *p, int type);
+	void (*task_change_group)(struct task_struct *p, int type);
 #endif
 };
 
@@ -1524,6 +1534,7 @@ static inline void idle_set_state(struct rq *rq,
 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
 {
 	SCHED_WARN_ON(!rcu_read_lock_held());
+
 	return rq->idle_state;
 }
 #else
@@ -1562,9 +1573,9 @@ extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 
-#define BW_SHIFT	20
-#define BW_UNIT		(1 << BW_SHIFT)
-#define RATIO_SHIFT	8
+#define BW_SHIFT		20
+#define BW_UNIT			(1 << BW_SHIFT)
+#define RATIO_SHIFT		8
 unsigned long to_ratio(u64 period, u64 runtime);
 
 extern void init_entity_runnable_average(struct sched_entity *se);
@@ -1814,8 +1825,8 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 /*
  * Unfair double_lock_balance: Optimizes throughput at the expense of
  * latency by eliminating extra atomic operations when the locks are
- * already in proper order on entry.  This favors lower cpu-ids and will
- * grant the double lock to lower cpus over higher ids under contention,
+ * already in proper order on entry.  This favors lower CPU-ids and will
+ * grant the double lock to lower CPUs over higher ids under contention,
  * regardless of entry order into the function.
  */
 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
@@ -1847,7 +1858,7 @@ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
 {
 	if (unlikely(!irqs_disabled())) {
-		/* printk() doesn't work good under rq->lock */
+		/* printk() doesn't work well under rq->lock */
 		raw_spin_unlock(&this_rq->lock);
 		BUG_ON(1);
 	}
@@ -2106,15 +2117,14 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
 #endif /* CONFIG_CPU_FREQ */
 
 #ifdef arch_scale_freq_capacity
-#ifndef arch_scale_freq_invariant
-#define arch_scale_freq_invariant()	(true)
-#endif
-#else /* arch_scale_freq_capacity */
-#define arch_scale_freq_invariant()	(false)
+# ifndef arch_scale_freq_invariant
+#  define arch_scale_freq_invariant()	true
+# endif
+#else
+# define arch_scale_freq_invariant()	false
 #endif
 
 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
-
 static inline unsigned long cpu_util_dl(struct rq *rq)
 {
 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
@@ -2124,5 +2134,4 @@ static inline unsigned long cpu_util_cfs(struct rq *rq)
 {
 	return rq->cfs.avg.util_avg;
 }
-
 #endif
diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c
index 940b1fa..968c1fe 100644
--- a/kernel/sched/stats.c
+++ b/kernel/sched/stats.c
@@ -78,8 +78,8 @@ static int show_schedstat(struct seq_file *seq, void *v)
  * This itererator needs some explanation.
  * It returns 1 for the header position.
  * This means 2 is cpu 0.
- * In a hotplugged system some cpus, including cpu 0, may be missing so we have
- * to use cpumask_* to iterate over the cpus.
+ * In a hotplugged system some CPUs, including cpu 0, may be missing so we have
+ * to use cpumask_* to iterate over the CPUs.
  */
 static void *schedstat_start(struct seq_file *file, loff_t *offset)
 {
@@ -99,12 +99,14 @@ static void *schedstat_start(struct seq_file *file, loff_t *offset)
 
 	if (n < nr_cpu_ids)
 		return (void *)(unsigned long)(n + 2);
+
 	return NULL;
 }
 
 static void *schedstat_next(struct seq_file *file, void *data, loff_t *offset)
 {
 	(*offset)++;
+
 	return schedstat_start(file, offset);
 }
 
@@ -134,6 +136,7 @@ static const struct file_operations proc_schedstat_operations = {
 static int __init proc_schedstat_init(void)
 {
 	proc_create("schedstat", 0, NULL, &proc_schedstat_operations);
+
 	return 0;
 }
 subsys_initcall(proc_schedstat_init);
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
index 8e7b58d..8aea199 100644
--- a/kernel/sched/stats.h
+++ b/kernel/sched/stats.h
@@ -30,35 +30,29 @@ rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 	if (rq)
 		rq->rq_sched_info.run_delay += delta;
 }
-#define schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
+#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 #define __schedstat_inc(var)		do { var++; } while (0)
-#define schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
+#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 #define __schedstat_add(var, amt)	do { var += (amt); } while (0)
-#define schedstat_add(var, amt)		do { if (schedstat_enabled()) { var += (amt); } } while (0)
-#define __schedstat_set(var, val)		do { var = (val); } while (0)
-#define schedstat_set(var, val)		do { if (schedstat_enabled()) { var = (val); } } while (0)
-#define schedstat_val(var)		(var)
-#define schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
+#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
+#define __schedstat_set(var, val)	do { var = (val); } while (0)
+#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
+#define   schedstat_val(var)		(var)
+#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 
-#else /* !CONFIG_SCHEDSTATS */
-static inline void
-rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
-{}
-static inline void
-rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
-{}
-static inline void
-rq_sched_info_depart(struct rq *rq, unsigned long long delta)
-{}
-#define schedstat_enabled()		0
-#define __schedstat_inc(var)		do { } while (0)
-#define schedstat_inc(var)		do { } while (0)
-#define __schedstat_add(var, amt)	do { } while (0)
-#define schedstat_add(var, amt)		do { } while (0)
-#define __schedstat_set(var, val)	do { } while (0)
-#define schedstat_set(var, val)		do { } while (0)
-#define schedstat_val(var)		0
-#define schedstat_val_or_zero(var)	0
+#else /* !CONFIG_SCHEDSTATS: */
+static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
+static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
+static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
+# define   schedstat_enabled()		0
+# define __schedstat_inc(var)		do { } while (0)
+# define   schedstat_inc(var)		do { } while (0)
+# define __schedstat_add(var, amt)	do { } while (0)
+# define   schedstat_add(var, amt)	do { } while (0)
+# define __schedstat_set(var, val)	do { } while (0)
+# define   schedstat_set(var, val)	do { } while (0)
+# define   schedstat_val(var)		0
+# define   schedstat_val_or_zero(var)	0
 #endif /* CONFIG_SCHEDSTATS */
 
 #ifdef CONFIG_SCHED_INFO
@@ -69,9 +63,9 @@ static inline void sched_info_reset_dequeued(struct task_struct *t)
 
 /*
  * We are interested in knowing how long it was from the *first* time a
- * task was queued to the time that it finally hit a cpu, we call this routine
- * from dequeue_task() to account for possible rq->clock skew across cpus. The
- * delta taken on each cpu would annul the skew.
+ * task was queued to the time that it finally hit a CPU, we call this routine
+ * from dequeue_task() to account for possible rq->clock skew across CPUs. The
+ * delta taken on each CPU would annul the skew.
  */
 static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 {
@@ -87,7 +81,7 @@ static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
 }
 
 /*
- * Called when a task finally hits the cpu.  We can now calculate how
+ * Called when a task finally hits the CPU.  We can now calculate how
  * long it was waiting to run.  We also note when it began so that we
  * can keep stats on how long its timeslice is.
  */
@@ -112,9 +106,10 @@ static void sched_info_arrive(struct rq *rq, struct task_struct *t)
  */
 static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
 {
-	if (unlikely(sched_info_on()))
+	if (unlikely(sched_info_on())) {
 		if (!t->sched_info.last_queued)
 			t->sched_info.last_queued = rq_clock(rq);
+	}
 }
 
 /*
@@ -127,8 +122,7 @@ static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
  */
 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
 {
-	unsigned long long delta = rq_clock(rq) -
-					t->sched_info.last_arrival;
+	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
 
 	rq_sched_info_depart(rq, delta);
 
@@ -142,11 +136,10 @@ static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
  * the idle task.)  We are only called when prev != next.
  */
 static inline void
-__sched_info_switch(struct rq *rq,
-		    struct task_struct *prev, struct task_struct *next)
+__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 {
 	/*
-	 * prev now departs the cpu.  It's not interesting to record
+	 * prev now departs the CPU.  It's not interesting to record
 	 * stats about how efficient we were at scheduling the idle
 	 * process, however.
 	 */
@@ -156,18 +149,19 @@ __sched_info_switch(struct rq *rq,
 	if (next != rq->idle)
 		sched_info_arrive(rq, next);
 }
+
 static inline void
-sched_info_switch(struct rq *rq,
-		  struct task_struct *prev, struct task_struct *next)
+sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
 {
 	if (unlikely(sched_info_on()))
 		__sched_info_switch(rq, prev, next);
 }
-#else
-#define sched_info_queued(rq, t)		do { } while (0)
-#define sched_info_reset_dequeued(t)	do { } while (0)
-#define sched_info_dequeued(rq, t)		do { } while (0)
-#define sched_info_depart(rq, t)		do { } while (0)
-#define sched_info_arrive(rq, next)		do { } while (0)
-#define sched_info_switch(rq, t, next)		do { } while (0)
+
+#else /* !CONFIG_SCHED_INFO: */
+# define sched_info_queued(rq, t)	do { } while (0)
+# define sched_info_reset_dequeued(t)	do { } while (0)
+# define sched_info_dequeued(rq, t)	do { } while (0)
+# define sched_info_depart(rq, t)	do { } while (0)
+# define sched_info_arrive(rq, next)	do { } while (0)
+# define sched_info_switch(rq, t, next)	do { } while (0)
 #endif /* CONFIG_SCHED_INFO */
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index ea8d2b6..c183b79 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -1,6 +1,4 @@
 // SPDX-License-Identifier: GPL-2.0
-#include "sched.h"
-
 /*
  * stop-task scheduling class.
  *
@@ -9,6 +7,7 @@
  *
  * See kernel/stop_machine.c
  */
+#include "sched.h"
 
 #ifdef CONFIG_SMP
 static int
diff --git a/kernel/sched/swait.c b/kernel/sched/swait.c
index 9ff1555..b88ab4e 100644
--- a/kernel/sched/swait.c
+++ b/kernel/sched/swait.c
@@ -1,4 +1,7 @@
 // SPDX-License-Identifier: GPL-2.0
+/*
+ * <linux/swait.h> (simple wait queues ) implementation:
+ */
 #include <linux/sched/signal.h>
 #include <linux/swait.h>
 
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 519b024..219eee7 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -41,8 +41,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
 	if (!(sd->flags & SD_LOAD_BALANCE)) {
 		printk("does not load-balance\n");
 		if (sd->parent)
-			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-					" has parent");
+			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
 		return -1;
 	}
 
@@ -50,12 +49,10 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
 
 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-		printk(KERN_ERR "ERROR: domain->span does not contain "
-				"CPU%d\n", cpu);
+		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
 	}
 	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
-		printk(KERN_ERR "ERROR: domain->groups does not contain"
-				" CPU%d\n", cpu);
+		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
 	}
 
 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
@@ -115,8 +112,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
 
 	if (sd->parent &&
 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
-		printk(KERN_ERR "ERROR: parent span is not a superset "
-			"of domain->span\n");
+		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 	return 0;
 }
 
@@ -595,7 +591,7 @@ int group_balance_cpu(struct sched_group *sg)
  * are not.
  *
  * This leads to a few particularly weird cases where the sched_domain's are
- * not of the same number for each cpu. Consider:
+ * not of the same number for each CPU. Consider:
  *
  * NUMA-2	0-3						0-3
  *  groups:	{0-2},{1-3}					{1-3},{0-2}
@@ -780,7 +776,7 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  *	    ^ ^             ^ ^
  *          `-'             `-'
  *
- * The sched_domains are per-cpu and have a two way link (parent & child) and
+ * The sched_domains are per-CPU and have a two way link (parent & child) and
  * denote the ever growing mask of CPUs belonging to that level of topology.
  *
  * Each sched_domain has a circular (double) linked list of sched_group's, each
@@ -1021,6 +1017,7 @@ __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
 	d->rd = alloc_rootdomain();
 	if (!d->rd)
 		return sa_sd;
+
 	return sa_rootdomain;
 }
 
@@ -1047,12 +1044,14 @@ static void claim_allocations(int cpu, struct sched_domain *sd)
 }
 
 #ifdef CONFIG_NUMA
-static int sched_domains_numa_levels;
 enum numa_topology_type sched_numa_topology_type;
-static int *sched_domains_numa_distance;
-int sched_max_numa_distance;
-static struct cpumask ***sched_domains_numa_masks;
-static int sched_domains_curr_level;
+
+static int			sched_domains_numa_levels;
+static int			sched_domains_curr_level;
+
+int				sched_max_numa_distance;
+static int			*sched_domains_numa_distance;
+static struct cpumask		***sched_domains_numa_masks;
 #endif
 
 /*
@@ -1074,11 +1073,11 @@ static int sched_domains_curr_level;
  *   SD_ASYM_PACKING        - describes SMT quirks
  */
 #define TOPOLOGY_SD_FLAGS		\
-	(SD_SHARE_CPUCAPACITY |		\
+	(SD_SHARE_CPUCAPACITY	|	\
 	 SD_SHARE_PKG_RESOURCES |	\
-	 SD_NUMA |			\
-	 SD_ASYM_PACKING |		\
-	 SD_ASYM_CPUCAPACITY |		\
+	 SD_NUMA		|	\
+	 SD_ASYM_PACKING	|	\
+	 SD_ASYM_CPUCAPACITY	|	\
 	 SD_SHARE_POWERDOMAIN)
 
 static struct sched_domain *
@@ -1628,7 +1627,7 @@ static struct sched_domain *build_sched_domain(struct sched_domain_topology_leve
 			pr_err("     the %s domain not a subset of the %s domain\n",
 					child->name, sd->name);
 #endif
-			/* Fixup, ensure @sd has at least @child cpus. */
+			/* Fixup, ensure @sd has at least @child CPUs. */
 			cpumask_or(sched_domain_span(sd),
 				   sched_domain_span(sd),
 				   sched_domain_span(child));
@@ -1720,6 +1719,7 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
 	ret = 0;
 error:
 	__free_domain_allocs(&d, alloc_state, cpu_map);
+
 	return ret;
 }
 
@@ -1824,6 +1824,7 @@ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
 		return 1;
 
 	tmp = SD_ATTR_INIT;
+
 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
 			new ? (new + idx_new) : &tmp,
 			sizeof(struct sched_domain_attr));
@@ -1929,4 +1930,3 @@ void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 
 	mutex_unlock(&sched_domains_mutex);
 }
-
diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c
index 929ecb7..7b2a142a 100644
--- a/kernel/sched/wait.c
+++ b/kernel/sched/wait.c
@@ -107,6 +107,7 @@ static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
 			break;
 		}
 	}
+
 	return nr_exclusive;
 }
 
@@ -317,6 +318,7 @@ int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
 	spin_unlock(&wq->lock);
 	schedule();
 	spin_lock(&wq->lock);
+
 	return 0;
 }
 EXPORT_SYMBOL(do_wait_intr);
@@ -333,6 +335,7 @@ int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
 	spin_unlock_irq(&wq->lock);
 	schedule();
 	spin_lock_irq(&wq->lock);
+
 	return 0;
 }
 EXPORT_SYMBOL(do_wait_intr_irq);
@@ -378,6 +381,7 @@ int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, i
 
 	if (ret)
 		list_del_init(&wq_entry->entry);
+
 	return ret;
 }
 EXPORT_SYMBOL(autoremove_wake_function);
diff --git a/kernel/sched/wait_bit.c b/kernel/sched/wait_bit.c
index 84cb3ac..5293c59 100644
--- a/kernel/sched/wait_bit.c
+++ b/kernel/sched/wait_bit.c
@@ -29,8 +29,8 @@ int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync
 			wait_bit->key.bit_nr != key->bit_nr ||
 			test_bit(key->bit_nr, key->flags))
 		return 0;
-	else
-		return autoremove_wake_function(wq_entry, mode, sync, key);
+
+	return autoremove_wake_function(wq_entry, mode, sync, key);
 }
 EXPORT_SYMBOL(wake_bit_function);
 
@@ -50,7 +50,9 @@ __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_
 		if (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags))
 			ret = (*action)(&wbq_entry->key, mode);
 	} while (test_bit(wbq_entry->key.bit_nr, wbq_entry->key.flags) && !ret);
+
 	finish_wait(wq_head, &wbq_entry->wq_entry);
+
 	return ret;
 }
 EXPORT_SYMBOL(__wait_on_bit);
@@ -73,6 +75,7 @@ int __sched out_of_line_wait_on_bit_timeout(
 	DEFINE_WAIT_BIT(wq_entry, word, bit);
 
 	wq_entry.key.timeout = jiffies + timeout;
+
 	return __wait_on_bit(wq_head, &wq_entry, action, mode);
 }
 EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
@@ -120,6 +123,7 @@ EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
 void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit)
 {
 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
+
 	if (waitqueue_active(wq_head))
 		__wake_up(wq_head, TASK_NORMAL, 1, &key);
 }
@@ -157,6 +161,7 @@ static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
 {
 	if (BITS_PER_LONG == 64) {
 		unsigned long q = (unsigned long)p;
+
 		return bit_waitqueue((void *)(q & ~1), q & 1);
 	}
 	return bit_waitqueue(p, 0);
@@ -173,6 +178,7 @@ static int wake_atomic_t_function(struct wait_queue_entry *wq_entry, unsigned mo
 	    wait_bit->key.bit_nr != key->bit_nr ||
 	    atomic_read(val) != 0)
 		return 0;
+
 	return autoremove_wake_function(wq_entry, mode, sync, key);
 }
 
@@ -196,6 +202,7 @@ int __wait_on_atomic_t(struct wait_queue_head *wq_head, struct wait_bit_queue_en
 		ret = (*action)(val, mode);
 	} while (!ret && atomic_read(val) != 0);
 	finish_wait(wq_head, &wbq_entry->wq_entry);
+
 	return ret;
 }
 
@@ -226,6 +233,7 @@ __sched int atomic_t_wait(atomic_t *counter, unsigned int mode)
 	schedule();
 	if (signal_pending_state(mode, current))
 		return -EINTR;
+
 	return 0;
 }
 EXPORT_SYMBOL(atomic_t_wait);
@@ -250,6 +258,7 @@ __sched int bit_wait(struct wait_bit_key *word, int mode)
 	schedule();
 	if (signal_pending_state(mode, current))
 		return -EINTR;
+
 	return 0;
 }
 EXPORT_SYMBOL(bit_wait);
@@ -259,6 +268,7 @@ __sched int bit_wait_io(struct wait_bit_key *word, int mode)
 	io_schedule();
 	if (signal_pending_state(mode, current))
 		return -EINTR;
+
 	return 0;
 }
 EXPORT_SYMBOL(bit_wait_io);
@@ -266,11 +276,13 @@ EXPORT_SYMBOL(bit_wait_io);
 __sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
 {
 	unsigned long now = READ_ONCE(jiffies);
+
 	if (time_after_eq(now, word->timeout))
 		return -EAGAIN;
 	schedule_timeout(word->timeout - now);
 	if (signal_pending_state(mode, current))
 		return -EINTR;
+
 	return 0;
 }
 EXPORT_SYMBOL_GPL(bit_wait_timeout);
@@ -278,11 +290,13 @@ EXPORT_SYMBOL_GPL(bit_wait_timeout);
 __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
 {
 	unsigned long now = READ_ONCE(jiffies);
+
 	if (time_after_eq(now, word->timeout))
 		return -EAGAIN;
 	io_schedule_timeout(word->timeout - now);
 	if (signal_pending_state(mode, current))
 		return -EINTR;
+
 	return 0;
 }
 EXPORT_SYMBOL_GPL(bit_wait_io_timeout);