| /* |
| * count the number of connections matching an arbitrary key. |
| * |
| * (C) 2017 Red Hat GmbH |
| * Author: Florian Westphal <fw@strlen.de> |
| * |
| * split from xt_connlimit.c: |
| * (c) 2000 Gerd Knorr <kraxel@bytesex.org> |
| * Nov 2002: Martin Bene <martin.bene@icomedias.com>: |
| * only ignore TIME_WAIT or gone connections |
| * (C) CC Computer Consultants GmbH, 2007 |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/in.h> |
| #include <linux/in6.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/jhash.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/rbtree.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/netfilter/nf_conntrack_tcp.h> |
| #include <linux/netfilter/x_tables.h> |
| #include <net/netfilter/nf_conntrack.h> |
| #include <net/netfilter/nf_conntrack_count.h> |
| #include <net/netfilter/nf_conntrack_core.h> |
| #include <net/netfilter/nf_conntrack_tuple.h> |
| #include <net/netfilter/nf_conntrack_zones.h> |
| |
| #define CONNCOUNT_SLOTS 256U |
| |
| #ifdef CONFIG_LOCKDEP |
| #define CONNCOUNT_LOCK_SLOTS 8U |
| #else |
| #define CONNCOUNT_LOCK_SLOTS 256U |
| #endif |
| |
| #define CONNCOUNT_GC_MAX_NODES 8 |
| #define MAX_KEYLEN 5 |
| |
| /* we will save the tuples of all connections we care about */ |
| struct nf_conncount_tuple { |
| struct list_head node; |
| struct nf_conntrack_tuple tuple; |
| struct nf_conntrack_zone zone; |
| int cpu; |
| u32 jiffies32; |
| struct rcu_head rcu_head; |
| }; |
| |
| struct nf_conncount_rb { |
| struct rb_node node; |
| struct nf_conncount_list list; |
| u32 key[MAX_KEYLEN]; |
| struct rcu_head rcu_head; |
| }; |
| |
| static spinlock_t nf_conncount_locks[CONNCOUNT_LOCK_SLOTS] __cacheline_aligned_in_smp; |
| |
| struct nf_conncount_data { |
| unsigned int keylen; |
| struct rb_root root[CONNCOUNT_SLOTS]; |
| struct net *net; |
| struct work_struct gc_work; |
| unsigned long pending_trees[BITS_TO_LONGS(CONNCOUNT_SLOTS)]; |
| unsigned int gc_tree; |
| }; |
| |
| static u_int32_t conncount_rnd __read_mostly; |
| static struct kmem_cache *conncount_rb_cachep __read_mostly; |
| static struct kmem_cache *conncount_conn_cachep __read_mostly; |
| |
| static inline bool already_closed(const struct nf_conn *conn) |
| { |
| if (nf_ct_protonum(conn) == IPPROTO_TCP) |
| return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT || |
| conn->proto.tcp.state == TCP_CONNTRACK_CLOSE; |
| else |
| return false; |
| } |
| |
| static int key_diff(const u32 *a, const u32 *b, unsigned int klen) |
| { |
| return memcmp(a, b, klen * sizeof(u32)); |
| } |
| |
| enum nf_conncount_list_add |
| nf_conncount_add(struct nf_conncount_list *list, |
| const struct nf_conntrack_tuple *tuple, |
| const struct nf_conntrack_zone *zone) |
| { |
| struct nf_conncount_tuple *conn; |
| |
| if (WARN_ON_ONCE(list->count > INT_MAX)) |
| return NF_CONNCOUNT_ERR; |
| |
| conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); |
| if (conn == NULL) |
| return NF_CONNCOUNT_ERR; |
| |
| conn->tuple = *tuple; |
| conn->zone = *zone; |
| conn->cpu = raw_smp_processor_id(); |
| conn->jiffies32 = (u32)jiffies; |
| spin_lock(&list->list_lock); |
| if (list->dead == true) { |
| kmem_cache_free(conncount_conn_cachep, conn); |
| spin_unlock(&list->list_lock); |
| return NF_CONNCOUNT_SKIP; |
| } |
| list_add_tail(&conn->node, &list->head); |
| list->count++; |
| spin_unlock(&list->list_lock); |
| return NF_CONNCOUNT_ADDED; |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_add); |
| |
| static void __conn_free(struct rcu_head *h) |
| { |
| struct nf_conncount_tuple *conn; |
| |
| conn = container_of(h, struct nf_conncount_tuple, rcu_head); |
| kmem_cache_free(conncount_conn_cachep, conn); |
| } |
| |
| static bool conn_free(struct nf_conncount_list *list, |
| struct nf_conncount_tuple *conn) |
| { |
| bool free_entry = false; |
| |
| spin_lock(&list->list_lock); |
| |
| if (list->count == 0) { |
| spin_unlock(&list->list_lock); |
| return free_entry; |
| } |
| |
| list->count--; |
| list_del_rcu(&conn->node); |
| if (list->count == 0) |
| free_entry = true; |
| |
| spin_unlock(&list->list_lock); |
| call_rcu(&conn->rcu_head, __conn_free); |
| return free_entry; |
| } |
| |
| static const struct nf_conntrack_tuple_hash * |
| find_or_evict(struct net *net, struct nf_conncount_list *list, |
| struct nf_conncount_tuple *conn, bool *free_entry) |
| { |
| const struct nf_conntrack_tuple_hash *found; |
| unsigned long a, b; |
| int cpu = raw_smp_processor_id(); |
| __s32 age; |
| |
| found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple); |
| if (found) |
| return found; |
| b = conn->jiffies32; |
| a = (u32)jiffies; |
| |
| /* conn might have been added just before by another cpu and |
| * might still be unconfirmed. In this case, nf_conntrack_find() |
| * returns no result. Thus only evict if this cpu added the |
| * stale entry or if the entry is older than two jiffies. |
| */ |
| age = a - b; |
| if (conn->cpu == cpu || age >= 2) { |
| *free_entry = conn_free(list, conn); |
| return ERR_PTR(-ENOENT); |
| } |
| |
| return ERR_PTR(-EAGAIN); |
| } |
| |
| void nf_conncount_lookup(struct net *net, |
| struct nf_conncount_list *list, |
| const struct nf_conntrack_tuple *tuple, |
| const struct nf_conntrack_zone *zone, |
| bool *addit) |
| { |
| const struct nf_conntrack_tuple_hash *found; |
| struct nf_conncount_tuple *conn, *conn_n; |
| struct nf_conn *found_ct; |
| unsigned int collect = 0; |
| bool free_entry = false; |
| |
| /* best effort only */ |
| *addit = tuple ? true : false; |
| |
| /* check the saved connections */ |
| list_for_each_entry_safe(conn, conn_n, &list->head, node) { |
| if (collect > CONNCOUNT_GC_MAX_NODES) |
| break; |
| |
| found = find_or_evict(net, list, conn, &free_entry); |
| if (IS_ERR(found)) { |
| /* Not found, but might be about to be confirmed */ |
| if (PTR_ERR(found) == -EAGAIN) { |
| if (!tuple) |
| continue; |
| |
| if (nf_ct_tuple_equal(&conn->tuple, tuple) && |
| nf_ct_zone_id(&conn->zone, conn->zone.dir) == |
| nf_ct_zone_id(zone, zone->dir)) |
| *addit = false; |
| } else if (PTR_ERR(found) == -ENOENT) |
| collect++; |
| continue; |
| } |
| |
| found_ct = nf_ct_tuplehash_to_ctrack(found); |
| |
| if (tuple && nf_ct_tuple_equal(&conn->tuple, tuple) && |
| nf_ct_zone_equal(found_ct, zone, zone->dir)) { |
| /* |
| * We should not see tuples twice unless someone hooks |
| * this into a table without "-p tcp --syn". |
| * |
| * Attempt to avoid a re-add in this case. |
| */ |
| *addit = false; |
| } else if (already_closed(found_ct)) { |
| /* |
| * we do not care about connections which are |
| * closed already -> ditch it |
| */ |
| nf_ct_put(found_ct); |
| conn_free(list, conn); |
| collect++; |
| continue; |
| } |
| |
| nf_ct_put(found_ct); |
| } |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_lookup); |
| |
| void nf_conncount_list_init(struct nf_conncount_list *list) |
| { |
| spin_lock_init(&list->list_lock); |
| INIT_LIST_HEAD(&list->head); |
| list->count = 1; |
| list->dead = false; |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_list_init); |
| |
| /* Return true if the list is empty */ |
| bool nf_conncount_gc_list(struct net *net, |
| struct nf_conncount_list *list) |
| { |
| const struct nf_conntrack_tuple_hash *found; |
| struct nf_conncount_tuple *conn, *conn_n; |
| struct nf_conn *found_ct; |
| unsigned int collected = 0; |
| bool free_entry = false; |
| |
| list_for_each_entry_safe(conn, conn_n, &list->head, node) { |
| found = find_or_evict(net, list, conn, &free_entry); |
| if (IS_ERR(found)) { |
| if (PTR_ERR(found) == -ENOENT) { |
| if (free_entry) |
| return true; |
| collected++; |
| } |
| continue; |
| } |
| |
| found_ct = nf_ct_tuplehash_to_ctrack(found); |
| if (already_closed(found_ct)) { |
| /* |
| * we do not care about connections which are |
| * closed already -> ditch it |
| */ |
| nf_ct_put(found_ct); |
| if (conn_free(list, conn)) |
| return true; |
| collected++; |
| continue; |
| } |
| |
| nf_ct_put(found_ct); |
| if (collected > CONNCOUNT_GC_MAX_NODES) |
| return false; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_gc_list); |
| |
| static void __tree_nodes_free(struct rcu_head *h) |
| { |
| struct nf_conncount_rb *rbconn; |
| |
| rbconn = container_of(h, struct nf_conncount_rb, rcu_head); |
| kmem_cache_free(conncount_rb_cachep, rbconn); |
| } |
| |
| static void tree_nodes_free(struct rb_root *root, |
| struct nf_conncount_rb *gc_nodes[], |
| unsigned int gc_count) |
| { |
| struct nf_conncount_rb *rbconn; |
| |
| while (gc_count) { |
| rbconn = gc_nodes[--gc_count]; |
| spin_lock(&rbconn->list.list_lock); |
| if (rbconn->list.count == 0 && rbconn->list.dead == false) { |
| rbconn->list.dead = true; |
| rb_erase(&rbconn->node, root); |
| call_rcu(&rbconn->rcu_head, __tree_nodes_free); |
| } |
| spin_unlock(&rbconn->list.list_lock); |
| } |
| } |
| |
| static void schedule_gc_worker(struct nf_conncount_data *data, int tree) |
| { |
| set_bit(tree, data->pending_trees); |
| schedule_work(&data->gc_work); |
| } |
| |
| static unsigned int |
| insert_tree(struct net *net, |
| struct nf_conncount_data *data, |
| struct rb_root *root, |
| unsigned int hash, |
| const u32 *key, |
| u8 keylen, |
| const struct nf_conntrack_tuple *tuple, |
| const struct nf_conntrack_zone *zone) |
| { |
| enum nf_conncount_list_add ret; |
| struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES]; |
| struct rb_node **rbnode, *parent; |
| struct nf_conncount_rb *rbconn; |
| struct nf_conncount_tuple *conn; |
| unsigned int count = 0, gc_count = 0; |
| bool node_found = false; |
| |
| spin_lock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]); |
| |
| parent = NULL; |
| rbnode = &(root->rb_node); |
| while (*rbnode) { |
| int diff; |
| rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node); |
| |
| parent = *rbnode; |
| diff = key_diff(key, rbconn->key, keylen); |
| if (diff < 0) { |
| rbnode = &((*rbnode)->rb_left); |
| } else if (diff > 0) { |
| rbnode = &((*rbnode)->rb_right); |
| } else { |
| /* unlikely: other cpu added node already */ |
| node_found = true; |
| ret = nf_conncount_add(&rbconn->list, tuple, zone); |
| if (ret == NF_CONNCOUNT_ERR) { |
| count = 0; /* hotdrop */ |
| } else if (ret == NF_CONNCOUNT_ADDED) { |
| count = rbconn->list.count; |
| } else { |
| /* NF_CONNCOUNT_SKIP, rbconn is already |
| * reclaimed by gc, insert a new tree node |
| */ |
| node_found = false; |
| } |
| break; |
| } |
| |
| if (gc_count >= ARRAY_SIZE(gc_nodes)) |
| continue; |
| |
| if (nf_conncount_gc_list(net, &rbconn->list)) |
| gc_nodes[gc_count++] = rbconn; |
| } |
| |
| if (gc_count) { |
| tree_nodes_free(root, gc_nodes, gc_count); |
| /* tree_node_free before new allocation permits |
| * allocator to re-use newly free'd object. |
| * |
| * This is a rare event; in most cases we will find |
| * existing node to re-use. (or gc_count is 0). |
| */ |
| |
| if (gc_count >= ARRAY_SIZE(gc_nodes)) |
| schedule_gc_worker(data, hash); |
| } |
| |
| if (node_found) |
| goto out_unlock; |
| |
| /* expected case: match, insert new node */ |
| rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC); |
| if (rbconn == NULL) |
| goto out_unlock; |
| |
| conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC); |
| if (conn == NULL) { |
| kmem_cache_free(conncount_rb_cachep, rbconn); |
| goto out_unlock; |
| } |
| |
| conn->tuple = *tuple; |
| conn->zone = *zone; |
| memcpy(rbconn->key, key, sizeof(u32) * keylen); |
| |
| nf_conncount_list_init(&rbconn->list); |
| list_add(&conn->node, &rbconn->list.head); |
| count = 1; |
| |
| rb_link_node(&rbconn->node, parent, rbnode); |
| rb_insert_color(&rbconn->node, root); |
| out_unlock: |
| spin_unlock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]); |
| return count; |
| } |
| |
| static unsigned int |
| count_tree(struct net *net, |
| struct nf_conncount_data *data, |
| const u32 *key, |
| const struct nf_conntrack_tuple *tuple, |
| const struct nf_conntrack_zone *zone) |
| { |
| enum nf_conncount_list_add ret; |
| struct rb_root *root; |
| struct rb_node *parent; |
| struct nf_conncount_rb *rbconn; |
| unsigned int hash; |
| u8 keylen = data->keylen; |
| |
| hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS; |
| root = &data->root[hash]; |
| |
| parent = rcu_dereference_raw(root->rb_node); |
| while (parent) { |
| int diff; |
| bool addit; |
| |
| rbconn = rb_entry(parent, struct nf_conncount_rb, node); |
| |
| diff = key_diff(key, rbconn->key, keylen); |
| if (diff < 0) { |
| parent = rcu_dereference_raw(parent->rb_left); |
| } else if (diff > 0) { |
| parent = rcu_dereference_raw(parent->rb_right); |
| } else { |
| /* same source network -> be counted! */ |
| nf_conncount_lookup(net, &rbconn->list, tuple, zone, |
| &addit); |
| |
| if (!addit) |
| return rbconn->list.count; |
| |
| ret = nf_conncount_add(&rbconn->list, tuple, zone); |
| if (ret == NF_CONNCOUNT_ERR) { |
| return 0; /* hotdrop */ |
| } else if (ret == NF_CONNCOUNT_ADDED) { |
| return rbconn->list.count; |
| } else { |
| /* NF_CONNCOUNT_SKIP, rbconn is already |
| * reclaimed by gc, insert a new tree node |
| */ |
| break; |
| } |
| } |
| } |
| |
| if (!tuple) |
| return 0; |
| |
| return insert_tree(net, data, root, hash, key, keylen, tuple, zone); |
| } |
| |
| static void tree_gc_worker(struct work_struct *work) |
| { |
| struct nf_conncount_data *data = container_of(work, struct nf_conncount_data, gc_work); |
| struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES], *rbconn; |
| struct rb_root *root; |
| struct rb_node *node; |
| unsigned int tree, next_tree, gc_count = 0; |
| |
| tree = data->gc_tree % CONNCOUNT_LOCK_SLOTS; |
| root = &data->root[tree]; |
| |
| rcu_read_lock(); |
| for (node = rb_first(root); node != NULL; node = rb_next(node)) { |
| rbconn = rb_entry(node, struct nf_conncount_rb, node); |
| if (nf_conncount_gc_list(data->net, &rbconn->list)) |
| gc_nodes[gc_count++] = rbconn; |
| } |
| rcu_read_unlock(); |
| |
| spin_lock_bh(&nf_conncount_locks[tree]); |
| |
| if (gc_count) { |
| tree_nodes_free(root, gc_nodes, gc_count); |
| } |
| |
| clear_bit(tree, data->pending_trees); |
| |
| next_tree = (tree + 1) % CONNCOUNT_SLOTS; |
| next_tree = find_next_bit(data->pending_trees, next_tree, CONNCOUNT_SLOTS); |
| |
| if (next_tree < CONNCOUNT_SLOTS) { |
| data->gc_tree = next_tree; |
| schedule_work(work); |
| } |
| |
| spin_unlock_bh(&nf_conncount_locks[tree]); |
| } |
| |
| /* Count and return number of conntrack entries in 'net' with particular 'key'. |
| * If 'tuple' is not null, insert it into the accounting data structure. |
| * Call with RCU read lock. |
| */ |
| unsigned int nf_conncount_count(struct net *net, |
| struct nf_conncount_data *data, |
| const u32 *key, |
| const struct nf_conntrack_tuple *tuple, |
| const struct nf_conntrack_zone *zone) |
| { |
| return count_tree(net, data, key, tuple, zone); |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_count); |
| |
| struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family, |
| unsigned int keylen) |
| { |
| struct nf_conncount_data *data; |
| int ret, i; |
| |
| if (keylen % sizeof(u32) || |
| keylen / sizeof(u32) > MAX_KEYLEN || |
| keylen == 0) |
| return ERR_PTR(-EINVAL); |
| |
| net_get_random_once(&conncount_rnd, sizeof(conncount_rnd)); |
| |
| data = kmalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = nf_ct_netns_get(net, family); |
| if (ret < 0) { |
| kfree(data); |
| return ERR_PTR(ret); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(data->root); ++i) |
| data->root[i] = RB_ROOT; |
| |
| data->keylen = keylen / sizeof(u32); |
| data->net = net; |
| INIT_WORK(&data->gc_work, tree_gc_worker); |
| |
| return data; |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_init); |
| |
| void nf_conncount_cache_free(struct nf_conncount_list *list) |
| { |
| struct nf_conncount_tuple *conn, *conn_n; |
| |
| list_for_each_entry_safe(conn, conn_n, &list->head, node) |
| kmem_cache_free(conncount_conn_cachep, conn); |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_cache_free); |
| |
| static void destroy_tree(struct rb_root *r) |
| { |
| struct nf_conncount_rb *rbconn; |
| struct rb_node *node; |
| |
| while ((node = rb_first(r)) != NULL) { |
| rbconn = rb_entry(node, struct nf_conncount_rb, node); |
| |
| rb_erase(node, r); |
| |
| nf_conncount_cache_free(&rbconn->list); |
| |
| kmem_cache_free(conncount_rb_cachep, rbconn); |
| } |
| } |
| |
| void nf_conncount_destroy(struct net *net, unsigned int family, |
| struct nf_conncount_data *data) |
| { |
| unsigned int i; |
| |
| cancel_work_sync(&data->gc_work); |
| nf_ct_netns_put(net, family); |
| |
| for (i = 0; i < ARRAY_SIZE(data->root); ++i) |
| destroy_tree(&data->root[i]); |
| |
| kfree(data); |
| } |
| EXPORT_SYMBOL_GPL(nf_conncount_destroy); |
| |
| static int __init nf_conncount_modinit(void) |
| { |
| int i; |
| |
| BUILD_BUG_ON(CONNCOUNT_LOCK_SLOTS > CONNCOUNT_SLOTS); |
| BUILD_BUG_ON((CONNCOUNT_SLOTS % CONNCOUNT_LOCK_SLOTS) != 0); |
| |
| for (i = 0; i < CONNCOUNT_LOCK_SLOTS; ++i) |
| spin_lock_init(&nf_conncount_locks[i]); |
| |
| conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple", |
| sizeof(struct nf_conncount_tuple), |
| 0, 0, NULL); |
| if (!conncount_conn_cachep) |
| return -ENOMEM; |
| |
| conncount_rb_cachep = kmem_cache_create("nf_conncount_rb", |
| sizeof(struct nf_conncount_rb), |
| 0, 0, NULL); |
| if (!conncount_rb_cachep) { |
| kmem_cache_destroy(conncount_conn_cachep); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void __exit nf_conncount_modexit(void) |
| { |
| kmem_cache_destroy(conncount_conn_cachep); |
| kmem_cache_destroy(conncount_rb_cachep); |
| } |
| |
| module_init(nf_conncount_modinit); |
| module_exit(nf_conncount_modexit); |
| MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>"); |
| MODULE_AUTHOR("Florian Westphal <fw@strlen.de>"); |
| MODULE_DESCRIPTION("netfilter: count number of connections matching a key"); |
| MODULE_LICENSE("GPL"); |