Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/fs/jffs/Makefile b/fs/jffs/Makefile
new file mode 100644
index 0000000..9c1c0bb
--- /dev/null
+++ b/fs/jffs/Makefile
@@ -0,0 +1,11 @@
+#
+# Makefile for the linux Journalling Flash FileSystem (JFFS) routines.
+#
+# $Id: Makefile,v 1.11 2001/09/25 20:59:41 dwmw2 Exp $
+#
+
+obj-$(CONFIG_JFFS_FS) += jffs.o
+
+jffs-y 				:= jffs_fm.o intrep.o inode-v23.o
+jffs-$(CONFIG_JFFS_PROC_FS)	+= jffs_proc.o
+jffs-objs			:= $(jffs-y)
diff --git a/fs/jffs/inode-v23.c b/fs/jffs/inode-v23.c
new file mode 100644
index 0000000..bfbeb4c
--- /dev/null
+++ b/fs/jffs/inode-v23.c
@@ -0,0 +1,1847 @@
+/*
+ * JFFS -- Journalling Flash File System, Linux implementation.
+ *
+ * Copyright (C) 1999, 2000  Axis Communications AB.
+ *
+ * Created by Finn Hakansson <finn@axis.com>.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * $Id: inode-v23.c,v 1.70 2001/10/02 09:16:02 dwmw2 Exp $
+ *
+ * Ported to Linux 2.3.x and MTD:
+ * Copyright (C) 2000  Alexander Larsson (alex@cendio.se), Cendio Systems AB
+ *
+ * Copyright 2000, 2001  Red Hat, Inc.
+ */
+
+/* inode.c -- Contains the code that is called from the VFS.  */
+
+/* TODO-ALEX:
+ * uid and gid are just 16 bit.
+ * jffs_file_write reads from user-space pointers without xx_from_user
+ * maybe other stuff do to.
+ */
+
+#include <linux/time.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/jffs.h>
+#include <linux/fs.h>
+#include <linux/smp_lock.h>
+#include <linux/ioctl.h>
+#include <linux/stat.h>
+#include <linux/blkdev.h>
+#include <linux/quotaops.h>
+#include <linux/highmem.h>
+#include <linux/vfs.h>
+#include <asm/semaphore.h>
+#include <asm/byteorder.h>
+#include <asm/uaccess.h>
+
+#include "jffs_fm.h"
+#include "intrep.h"
+#ifdef CONFIG_JFFS_PROC_FS
+#include "jffs_proc.h"
+#endif
+
+static int jffs_remove(struct inode *dir, struct dentry *dentry, int type);
+
+static struct super_operations jffs_ops;
+static struct file_operations jffs_file_operations;
+static struct inode_operations jffs_file_inode_operations;
+static struct file_operations jffs_dir_operations;
+static struct inode_operations jffs_dir_inode_operations;
+static struct address_space_operations jffs_address_operations;
+
+kmem_cache_t     *node_cache = NULL;
+kmem_cache_t     *fm_cache = NULL;
+
+/* Called by the VFS at mount time to initialize the whole file system.  */
+static int jffs_fill_super(struct super_block *sb, void *data, int silent)
+{
+	struct inode *root_inode;
+	struct jffs_control *c;
+
+	sb->s_flags |= MS_NODIRATIME;
+
+	D1(printk(KERN_NOTICE "JFFS: Trying to mount device %s.\n",
+		  sb->s_id));
+
+	if (MAJOR(sb->s_dev) != MTD_BLOCK_MAJOR) {
+		printk(KERN_WARNING "JFFS: Trying to mount a "
+		       "non-mtd device.\n");
+		return -EINVAL;
+	}
+
+	sb->s_blocksize = PAGE_CACHE_SIZE;
+	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
+	sb->s_fs_info = (void *) 0;
+	sb->s_maxbytes = 0xFFFFFFFF;
+
+	/* Build the file system.  */
+	if (jffs_build_fs(sb) < 0) {
+		goto jffs_sb_err1;
+	}
+
+	/*
+	 * set up enough so that we can read an inode
+	 */
+	sb->s_magic = JFFS_MAGIC_SB_BITMASK;
+	sb->s_op = &jffs_ops;
+
+	root_inode = iget(sb, JFFS_MIN_INO);
+	if (!root_inode)
+	        goto jffs_sb_err2;
+
+	/* Get the root directory of this file system.  */
+	if (!(sb->s_root = d_alloc_root(root_inode))) {
+		goto jffs_sb_err3;
+	}
+
+	c = (struct jffs_control *) sb->s_fs_info;
+
+#ifdef CONFIG_JFFS_PROC_FS
+	/* Set up the jffs proc file system.  */
+	if (jffs_register_jffs_proc_dir(MINOR(sb->s_dev), c) < 0) {
+		printk(KERN_WARNING "JFFS: Failed to initialize the JFFS "
+			"proc file system for device %s.\n",
+			sb->s_id);
+	}
+#endif
+
+	/* Set the Garbage Collection thresholds */
+
+	/* GC if free space goes below 5% of the total size */
+	c->gc_minfree_threshold = c->fmc->flash_size / 20;
+
+	if (c->gc_minfree_threshold < c->fmc->sector_size)
+		c->gc_minfree_threshold = c->fmc->sector_size;
+
+	/* GC if dirty space exceeds 33% of the total size. */
+	c->gc_maxdirty_threshold = c->fmc->flash_size / 3;
+
+	if (c->gc_maxdirty_threshold < c->fmc->sector_size)
+		c->gc_maxdirty_threshold = c->fmc->sector_size;
+
+
+	c->thread_pid = kernel_thread (jffs_garbage_collect_thread, 
+				        (void *) c, 
+				        CLONE_KERNEL);
+	D1(printk(KERN_NOTICE "JFFS: GC thread pid=%d.\n", (int) c->thread_pid));
+
+	D1(printk(KERN_NOTICE "JFFS: Successfully mounted device %s.\n",
+	       sb->s_id));
+	return 0;
+
+jffs_sb_err3:
+	iput(root_inode);
+jffs_sb_err2:
+	jffs_cleanup_control((struct jffs_control *)sb->s_fs_info);
+jffs_sb_err1:
+	printk(KERN_WARNING "JFFS: Failed to mount device %s.\n",
+	       sb->s_id);
+	return -EINVAL;
+}
+
+
+/* This function is called when the file system is umounted.  */
+static void
+jffs_put_super(struct super_block *sb)
+{
+	struct jffs_control *c = (struct jffs_control *) sb->s_fs_info;
+
+	D2(printk("jffs_put_super()\n"));
+
+#ifdef CONFIG_JFFS_PROC_FS
+	jffs_unregister_jffs_proc_dir(c);
+#endif
+
+	if (c->gc_task) {
+		D1(printk (KERN_NOTICE "jffs_put_super(): Telling gc thread to die.\n"));
+		send_sig(SIGKILL, c->gc_task, 1);
+	}
+	wait_for_completion(&c->gc_thread_comp);
+
+	D1(printk (KERN_NOTICE "jffs_put_super(): Successfully waited on thread.\n"));
+
+	jffs_cleanup_control((struct jffs_control *)sb->s_fs_info);
+	D1(printk(KERN_NOTICE "JFFS: Successfully unmounted device %s.\n",
+	       sb->s_id));
+}
+
+
+/* This function is called when user commands like chmod, chgrp and
+   chown are executed. System calls like trunc() results in a call
+   to this function.  */
+static int
+jffs_setattr(struct dentry *dentry, struct iattr *iattr)
+{
+	struct inode *inode = dentry->d_inode;
+	struct jffs_raw_inode raw_inode;
+	struct jffs_control *c;
+	struct jffs_fmcontrol *fmc;
+	struct jffs_file *f;
+	struct jffs_node *new_node;
+	int update_all;
+	int res = 0;
+	int recoverable = 0;
+
+	lock_kernel();
+
+	if ((res = inode_change_ok(inode, iattr))) 
+		goto out;
+
+	c = (struct jffs_control *)inode->i_sb->s_fs_info;
+	fmc = c->fmc;
+
+	D3(printk (KERN_NOTICE "notify_change(): down biglock\n"));
+	down(&fmc->biglock);
+
+	f = jffs_find_file(c, inode->i_ino);
+
+	ASSERT(if (!f) {
+		printk("jffs_setattr(): Invalid inode number: %lu\n",
+		       inode->i_ino);
+		D3(printk (KERN_NOTICE "notify_change(): up biglock\n"));
+		up(&fmc->biglock);
+		res = -EINVAL;
+		goto out;
+	});
+
+	D1(printk("***jffs_setattr(): file: \"%s\", ino: %u\n",
+		  f->name, f->ino));
+
+	update_all = iattr->ia_valid & ATTR_FORCE;
+
+	if ( (update_all || iattr->ia_valid & ATTR_SIZE)
+	     && (iattr->ia_size + 128 < f->size) ) {
+		/* We're shrinking the file by more than 128 bytes.
+		   We'll be able to GC and recover this space, so
+		   allow it to go into the reserved space. */
+		recoverable = 1;
+        }
+
+	if (!(new_node = jffs_alloc_node())) {
+		D(printk("jffs_setattr(): Allocation failed!\n"));
+		D3(printk (KERN_NOTICE "notify_change(): up biglock\n"));
+		up(&fmc->biglock);
+		res = -ENOMEM;
+		goto out;
+	}
+
+	new_node->data_offset = 0;
+	new_node->removed_size = 0;
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = f->ino;
+	raw_inode.pino = f->pino;
+	raw_inode.mode = f->mode;
+	raw_inode.uid = f->uid;
+	raw_inode.gid = f->gid;
+	raw_inode.atime = f->atime;
+	raw_inode.mtime = f->mtime;
+	raw_inode.ctime = f->ctime;
+	raw_inode.dsize = 0;
+	raw_inode.offset = 0;
+	raw_inode.rsize = 0;
+	raw_inode.dsize = 0;
+	raw_inode.nsize = f->nsize;
+	raw_inode.nlink = f->nlink;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = 0;
+
+	if (update_all || iattr->ia_valid & ATTR_MODE) {
+		raw_inode.mode = iattr->ia_mode;
+		inode->i_mode = iattr->ia_mode;
+	}
+	if (update_all || iattr->ia_valid & ATTR_UID) {
+		raw_inode.uid = iattr->ia_uid;
+		inode->i_uid = iattr->ia_uid;
+	}
+	if (update_all || iattr->ia_valid & ATTR_GID) {
+		raw_inode.gid = iattr->ia_gid;
+		inode->i_gid = iattr->ia_gid;
+	}
+	if (update_all || iattr->ia_valid & ATTR_SIZE) {
+		int len;
+		D1(printk("jffs_notify_change(): Changing size "
+			  "to %lu bytes!\n", (long)iattr->ia_size));
+		raw_inode.offset = iattr->ia_size;
+
+		/* Calculate how many bytes need to be removed from
+		   the end.  */
+		if (f->size < iattr->ia_size) {
+			len = 0;
+		}
+		else {
+			len = f->size - iattr->ia_size;
+		}
+
+		raw_inode.rsize = len;
+
+		/* The updated node will be a removal node, with
+		   base at the new size and size of the nbr of bytes
+		   to be removed.  */
+		new_node->data_offset = iattr->ia_size;
+		new_node->removed_size = len;
+		inode->i_size = iattr->ia_size;
+		inode->i_blocks = (inode->i_size + 511) >> 9;
+
+		if (len) {
+			invalidate_inode_pages(inode->i_mapping);
+		}
+		inode->i_ctime = CURRENT_TIME_SEC;
+		inode->i_mtime = inode->i_ctime;
+	}
+	if (update_all || iattr->ia_valid & ATTR_ATIME) {
+		raw_inode.atime = iattr->ia_atime.tv_sec;
+		inode->i_atime = iattr->ia_atime;
+	}
+	if (update_all || iattr->ia_valid & ATTR_MTIME) {
+		raw_inode.mtime = iattr->ia_mtime.tv_sec;
+		inode->i_mtime = iattr->ia_mtime;
+	}
+	if (update_all || iattr->ia_valid & ATTR_CTIME) {
+		raw_inode.ctime = iattr->ia_ctime.tv_sec;
+		inode->i_ctime = iattr->ia_ctime;
+	}
+
+	/* Write this node to the flash.  */
+	if ((res = jffs_write_node(c, new_node, &raw_inode, f->name, NULL, recoverable, f)) < 0) {
+		D(printk("jffs_notify_change(): The write failed!\n"));
+		jffs_free_node(new_node);
+		D3(printk (KERN_NOTICE "n_c(): up biglock\n"));
+		up(&c->fmc->biglock);
+		goto out;
+	}
+
+	jffs_insert_node(c, f, &raw_inode, NULL, new_node);
+
+	mark_inode_dirty(inode);
+	D3(printk (KERN_NOTICE "n_c(): up biglock\n"));
+	up(&c->fmc->biglock);
+out:
+	unlock_kernel();
+	return res;
+} /* jffs_notify_change()  */
+
+
+static struct inode *
+jffs_new_inode(const struct inode * dir, struct jffs_raw_inode *raw_inode,
+	       int * err)
+{
+	struct super_block * sb;
+	struct inode * inode;
+	struct jffs_control *c;
+	struct jffs_file *f;
+
+	sb = dir->i_sb;
+	inode = new_inode(sb);
+	if (!inode) {
+		*err = -ENOMEM;
+		return NULL;
+	}
+
+	c = (struct jffs_control *)sb->s_fs_info;
+
+	inode->i_ino = raw_inode->ino;
+	inode->i_mode = raw_inode->mode;
+	inode->i_nlink = raw_inode->nlink;
+	inode->i_uid = raw_inode->uid;
+	inode->i_gid = raw_inode->gid;
+	inode->i_size = raw_inode->dsize;
+	inode->i_atime.tv_sec = raw_inode->atime;
+	inode->i_mtime.tv_sec = raw_inode->mtime;
+	inode->i_ctime.tv_sec = raw_inode->ctime;
+	inode->i_ctime.tv_nsec = 0;
+	inode->i_mtime.tv_nsec = 0;
+	inode->i_atime.tv_nsec = 0;
+	inode->i_blksize = PAGE_SIZE;
+	inode->i_blocks = (inode->i_size + 511) >> 9;
+
+	f = jffs_find_file(c, raw_inode->ino);
+
+	inode->u.generic_ip = (void *)f;
+	insert_inode_hash(inode);
+
+	return inode;
+}
+
+/* Get statistics of the file system.  */
+static int
+jffs_statfs(struct super_block *sb, struct kstatfs *buf)
+{
+	struct jffs_control *c = (struct jffs_control *) sb->s_fs_info;
+	struct jffs_fmcontrol *fmc;
+
+	lock_kernel();
+
+	fmc = c->fmc;
+
+	D2(printk("jffs_statfs()\n"));
+
+	buf->f_type = JFFS_MAGIC_SB_BITMASK;
+	buf->f_bsize = PAGE_CACHE_SIZE;
+	buf->f_blocks = (fmc->flash_size / PAGE_CACHE_SIZE)
+		       - (fmc->min_free_size / PAGE_CACHE_SIZE);
+	buf->f_bfree = (jffs_free_size1(fmc) + jffs_free_size2(fmc) +
+		       fmc->dirty_size - fmc->min_free_size)
+			       >> PAGE_CACHE_SHIFT;
+	buf->f_bavail = buf->f_bfree;
+
+	/* Find out how many files there are in the filesystem.  */
+	buf->f_files = jffs_foreach_file(c, jffs_file_count);
+	buf->f_ffree = buf->f_bfree;
+	/* buf->f_fsid = 0; */
+	buf->f_namelen = JFFS_MAX_NAME_LEN;
+
+	unlock_kernel();
+
+	return 0;
+}
+
+
+/* Rename a file.  */
+static int
+jffs_rename(struct inode *old_dir, struct dentry *old_dentry,
+	    struct inode *new_dir, struct dentry *new_dentry)
+{
+	struct jffs_raw_inode raw_inode;
+	struct jffs_control *c;
+	struct jffs_file *old_dir_f;
+	struct jffs_file *new_dir_f;
+	struct jffs_file *del_f;
+	struct jffs_file *f;
+	struct jffs_node *node;
+	struct inode *inode;
+	int result = 0;
+	__u32 rename_data = 0;
+
+	D2(printk("***jffs_rename()\n"));
+
+	D(printk("jffs_rename(): old_dir: 0x%p, old name: 0x%p, "
+		 "new_dir: 0x%p, new name: 0x%p\n",
+		 old_dir, old_dentry->d_name.name,
+		 new_dir, new_dentry->d_name.name));
+
+	lock_kernel();
+	c = (struct jffs_control *)old_dir->i_sb->s_fs_info;
+	ASSERT(if (!c) {
+		printk(KERN_ERR "jffs_rename(): The old_dir inode "
+		       "didn't have a reference to a jffs_file struct\n");
+		unlock_kernel();
+		return -EIO;
+	});
+
+	result = -ENOTDIR;
+	if (!(old_dir_f = (struct jffs_file *)old_dir->u.generic_ip)) {
+		D(printk("jffs_rename(): Old dir invalid.\n"));
+		goto jffs_rename_end;
+	}
+
+	/* Try to find the file to move.  */
+	result = -ENOENT;
+	if (!(f = jffs_find_child(old_dir_f, old_dentry->d_name.name,
+				  old_dentry->d_name.len))) {
+		goto jffs_rename_end;
+	}
+
+	/* Find the new directory.  */
+	result = -ENOTDIR;
+	if (!(new_dir_f = (struct jffs_file *)new_dir->u.generic_ip)) {
+		D(printk("jffs_rename(): New dir invalid.\n"));
+		goto jffs_rename_end;
+	}
+	D3(printk (KERN_NOTICE "rename(): down biglock\n"));
+	down(&c->fmc->biglock);
+	/* Create a node and initialize as much as needed.  */
+	result = -ENOMEM;
+	if (!(node = jffs_alloc_node())) {
+		D(printk("jffs_rename(): Allocation failed: node == 0\n"));
+		goto jffs_rename_end;
+	}
+	node->data_offset = 0;
+	node->removed_size = 0;
+
+	/* Initialize the raw inode.  */
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = f->ino;
+	raw_inode.pino = new_dir_f->ino;
+/*  	raw_inode.version = f->highest_version + 1; */
+	raw_inode.mode = f->mode;
+	raw_inode.uid = current->fsuid;
+	raw_inode.gid = current->fsgid;
+#if 0
+	raw_inode.uid = f->uid;
+	raw_inode.gid = f->gid;
+#endif
+	raw_inode.atime = get_seconds();
+	raw_inode.mtime = raw_inode.atime;
+	raw_inode.ctime = f->ctime;
+	raw_inode.offset = 0;
+	raw_inode.dsize = 0;
+	raw_inode.rsize = 0;
+	raw_inode.nsize = new_dentry->d_name.len;
+	raw_inode.nlink = f->nlink;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = 0;
+
+	/* See if there already exists a file with the same name as
+	   new_name.  */
+	if ((del_f = jffs_find_child(new_dir_f, new_dentry->d_name.name,
+				     new_dentry->d_name.len))) {
+		raw_inode.rename = 1;
+		raw_inode.dsize = sizeof(__u32);
+		rename_data = del_f->ino;
+	}
+
+	/* Write the new node to the flash memory.  */
+	if ((result = jffs_write_node(c, node, &raw_inode,
+				      new_dentry->d_name.name,
+				      (unsigned char*)&rename_data, 0, f)) < 0) {
+		D(printk("jffs_rename(): Failed to write node to flash.\n"));
+		jffs_free_node(node);
+		goto jffs_rename_end;
+	}
+	raw_inode.dsize = 0;
+
+	if (raw_inode.rename) {
+		/* The file with the same name must be deleted.  */
+		//FIXME deadlock	        down(&c->fmc->gclock);
+		if ((result = jffs_remove(new_dir, new_dentry,
+					  del_f->mode)) < 0) {
+			/* This is really bad.  */
+			printk(KERN_ERR "JFFS: An error occurred in "
+			       "rename().\n");
+		}
+		//		up(&c->fmc->gclock);
+	}
+
+	if (old_dir_f != new_dir_f) {
+		/* Remove the file from its old position in the
+		   filesystem tree.  */
+		jffs_unlink_file_from_tree(f);
+	}
+
+	/* Insert the new node into the file system.  */
+	if ((result = jffs_insert_node(c, f, &raw_inode,
+				       new_dentry->d_name.name, node)) < 0) {
+		D(printk(KERN_ERR "jffs_rename(): jffs_insert_node() "
+			 "failed!\n"));
+	}
+
+	if (old_dir_f != new_dir_f) {
+		/* Insert the file to its new position in the
+		   file system.  */
+		jffs_insert_file_into_tree(f);
+	}
+
+	/* This is a kind of update of the inode we're about to make
+	   here.  This is what they do in ext2fs.  Kind of.  */
+	if ((inode = iget(new_dir->i_sb, f->ino))) {
+		inode->i_ctime = CURRENT_TIME_SEC;
+		mark_inode_dirty(inode);
+		iput(inode);
+	}
+
+jffs_rename_end:
+	D3(printk (KERN_NOTICE "rename(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return result;
+} /* jffs_rename()  */
+
+
+/* Read the contents of a directory.  Used by programs like `ls'
+   for instance.  */
+static int
+jffs_readdir(struct file *filp, void *dirent, filldir_t filldir)
+{
+	struct jffs_file *f;
+	struct dentry *dentry = filp->f_dentry;
+	struct inode *inode = dentry->d_inode;
+	struct jffs_control *c = (struct jffs_control *)inode->i_sb->s_fs_info;
+	int j;
+	int ddino;
+	lock_kernel();
+	D3(printk (KERN_NOTICE "readdir(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	D2(printk("jffs_readdir(): inode: 0x%p, filp: 0x%p\n", inode, filp));
+	if (filp->f_pos == 0) {
+		D3(printk("jffs_readdir(): \".\" %lu\n", inode->i_ino));
+		if (filldir(dirent, ".", 1, filp->f_pos, inode->i_ino, DT_DIR) < 0) {
+			D3(printk (KERN_NOTICE "readdir(): up biglock\n"));
+			up(&c->fmc->biglock);
+			unlock_kernel();
+			return 0;
+		}
+		filp->f_pos = 1;
+	}
+	if (filp->f_pos == 1) {
+		if (inode->i_ino == JFFS_MIN_INO) {
+			ddino = JFFS_MIN_INO;
+		}
+		else {
+			ddino = ((struct jffs_file *)
+				 inode->u.generic_ip)->pino;
+		}
+		D3(printk("jffs_readdir(): \"..\" %u\n", ddino));
+		if (filldir(dirent, "..", 2, filp->f_pos, ddino, DT_DIR) < 0) {
+			D3(printk (KERN_NOTICE "readdir(): up biglock\n"));
+			up(&c->fmc->biglock);
+			unlock_kernel();
+			return 0;
+		}
+		filp->f_pos++;
+	}
+	f = ((struct jffs_file *)inode->u.generic_ip)->children;
+
+	j = 2;
+	while(f && (f->deleted || j++ < filp->f_pos )) {
+		f = f->sibling_next;
+	}
+
+	while (f) {
+		D3(printk("jffs_readdir(): \"%s\" ino: %u\n",
+			  (f->name ? f->name : ""), f->ino));
+		if (filldir(dirent, f->name, f->nsize,
+			    filp->f_pos , f->ino, DT_UNKNOWN) < 0) {
+		        D3(printk (KERN_NOTICE "readdir(): up biglock\n"));
+			up(&c->fmc->biglock);
+			unlock_kernel();
+			return 0;
+		}
+		filp->f_pos++;
+		do {
+			f = f->sibling_next;
+		} while(f && f->deleted);
+	}
+	D3(printk (KERN_NOTICE "readdir(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return filp->f_pos;
+} /* jffs_readdir()  */
+
+
+/* Find a file in a directory. If the file exists, return its
+   corresponding dentry.  */
+static struct dentry *
+jffs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
+{
+	struct jffs_file *d;
+	struct jffs_file *f;
+	struct jffs_control *c = (struct jffs_control *)dir->i_sb->s_fs_info;
+	int len;
+	int r = 0;
+	const char *name;
+	struct inode *inode = NULL;
+
+	len = dentry->d_name.len;
+	name = dentry->d_name.name;
+
+	lock_kernel();
+
+	D3({
+		char *s = (char *)kmalloc(len + 1, GFP_KERNEL);
+		memcpy(s, name, len);
+		s[len] = '\0';
+		printk("jffs_lookup(): dir: 0x%p, name: \"%s\"\n", dir, s);
+		kfree(s);
+	});
+
+	D3(printk (KERN_NOTICE "lookup(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	r = -ENAMETOOLONG;
+	if (len > JFFS_MAX_NAME_LEN) {
+		goto jffs_lookup_end;
+	}
+
+	r = -EACCES;
+	if (!(d = (struct jffs_file *)dir->u.generic_ip)) {
+		D(printk("jffs_lookup(): No such inode! (%lu)\n",
+			 dir->i_ino));
+		goto jffs_lookup_end;
+	}
+
+	/* Get the corresponding inode to the file.  */
+
+	/* iget calls jffs_read_inode, so we need to drop the biglock
+           before calling iget.  Unfortunately, the GC has a tendency
+           to sneak in here, because iget sometimes calls schedule ().
+	*/
+
+	if ((len == 1) && (name[0] == '.')) {
+		D3(printk (KERN_NOTICE "lookup(): up biglock\n"));
+		up(&c->fmc->biglock);
+		if (!(inode = iget(dir->i_sb, d->ino))) {
+			D(printk("jffs_lookup(): . iget() ==> NULL\n"));
+			goto jffs_lookup_end_no_biglock;
+		}
+		D3(printk (KERN_NOTICE "lookup(): down biglock\n"));
+		down(&c->fmc->biglock);
+	} else if ((len == 2) && (name[0] == '.') && (name[1] == '.')) {
+	        D3(printk (KERN_NOTICE "lookup(): up biglock\n"));
+		up(&c->fmc->biglock);
+ 		if (!(inode = iget(dir->i_sb, d->pino))) {
+			D(printk("jffs_lookup(): .. iget() ==> NULL\n"));
+			goto jffs_lookup_end_no_biglock;
+		}
+		D3(printk (KERN_NOTICE "lookup(): down biglock\n"));
+		down(&c->fmc->biglock);
+	} else if ((f = jffs_find_child(d, name, len))) {
+	        D3(printk (KERN_NOTICE "lookup(): up biglock\n"));
+		up(&c->fmc->biglock);
+		if (!(inode = iget(dir->i_sb, f->ino))) {
+			D(printk("jffs_lookup(): iget() ==> NULL\n"));
+			goto jffs_lookup_end_no_biglock;
+		}
+		D3(printk (KERN_NOTICE "lookup(): down biglock\n"));
+		down(&c->fmc->biglock);
+	} else {
+		D3(printk("jffs_lookup(): Couldn't find the file. "
+			  "f = 0x%p, name = \"%s\", d = 0x%p, d->ino = %u\n",
+			  f, name, d, d->ino));
+		inode = NULL;
+	}
+
+	d_add(dentry, inode);
+	D3(printk (KERN_NOTICE "lookup(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return NULL;
+
+jffs_lookup_end:
+	D3(printk (KERN_NOTICE "lookup(): up biglock\n"));
+	up(&c->fmc->biglock);
+
+jffs_lookup_end_no_biglock:
+	unlock_kernel();
+	return ERR_PTR(r);
+} /* jffs_lookup()  */
+
+
+/* Try to read a page of data from a file.  */
+static int
+jffs_do_readpage_nolock(struct file *file, struct page *page)
+{
+	void *buf;
+	unsigned long read_len;
+	int result;
+	struct inode *inode = (struct inode*)page->mapping->host;
+	struct jffs_file *f = (struct jffs_file *)inode->u.generic_ip;
+	struct jffs_control *c = (struct jffs_control *)inode->i_sb->s_fs_info;
+	int r;
+	loff_t offset;
+
+	D2(printk("***jffs_readpage(): file = \"%s\", page->index = %lu\n",
+		  (f->name ? f->name : ""), (long)page->index));
+
+	get_page(page);
+	/* Don't SetPageLocked(page), should be locked already */
+	ClearPageUptodate(page);
+	ClearPageError(page);
+
+	D3(printk (KERN_NOTICE "readpage(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	read_len = 0;
+	result = 0;
+	offset = page->index << PAGE_CACHE_SHIFT;
+
+	kmap(page);
+	buf = page_address(page);
+	if (offset < inode->i_size) {
+		read_len = min_t(long, inode->i_size - offset, PAGE_SIZE);
+		r = jffs_read_data(f, buf, offset, read_len);
+		if (r != read_len) {
+			result = -EIO;
+			D(
+			        printk("***jffs_readpage(): Read error! "
+				       "Wanted to read %lu bytes but only "
+				       "read %d bytes.\n", read_len, r);
+			  );
+		}
+
+	}
+
+	/* This handles the case of partial or no read in above */
+	if(read_len < PAGE_SIZE)
+	        memset(buf + read_len, 0, PAGE_SIZE - read_len);
+	flush_dcache_page(page);
+	kunmap(page);
+
+	D3(printk (KERN_NOTICE "readpage(): up biglock\n"));
+	up(&c->fmc->biglock);
+
+	if (result) {
+	        SetPageError(page);
+	}else {
+	        SetPageUptodate(page);	        
+	}
+
+	page_cache_release(page);
+
+	D3(printk("jffs_readpage(): Leaving...\n"));
+
+	return result;
+} /* jffs_do_readpage_nolock()  */
+
+static int jffs_readpage(struct file *file, struct page *page)
+{
+	int ret = jffs_do_readpage_nolock(file, page);
+	unlock_page(page);
+	return ret;
+}
+
+/* Create a new directory.  */
+static int
+jffs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
+{
+	struct jffs_raw_inode raw_inode;
+	struct jffs_control *c;
+	struct jffs_node *node;
+	struct jffs_file *dir_f;
+	struct inode *inode;
+	int dir_mode;
+	int result = 0;
+	int err;
+
+	D1({
+	        int len = dentry->d_name.len;
+		char *_name = (char *) kmalloc(len + 1, GFP_KERNEL);
+		memcpy(_name, dentry->d_name.name, len);
+		_name[len] = '\0';
+		printk("***jffs_mkdir(): dir = 0x%p, name = \"%s\", "
+		       "len = %d, mode = 0x%08x\n", dir, _name, len, mode);
+		kfree(_name);
+	});
+
+	lock_kernel();
+	dir_f = (struct jffs_file *)dir->u.generic_ip;
+
+	ASSERT(if (!dir_f) {
+		printk(KERN_ERR "jffs_mkdir(): No reference to a "
+		       "jffs_file struct in inode.\n");
+		unlock_kernel();
+		return -EIO;
+	});
+
+	c = dir_f->c;
+	D3(printk (KERN_NOTICE "mkdir(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	dir_mode = S_IFDIR | (mode & (S_IRWXUGO|S_ISVTX)
+			      & ~current->fs->umask);
+	if (dir->i_mode & S_ISGID) {
+		dir_mode |= S_ISGID;
+	}
+
+	/* Create a node and initialize it as much as needed.  */
+	if (!(node = jffs_alloc_node())) {
+		D(printk("jffs_mkdir(): Allocation failed: node == 0\n"));
+		result = -ENOMEM;
+		goto jffs_mkdir_end;
+	}
+	node->data_offset = 0;
+	node->removed_size = 0;
+
+	/* Initialize the raw inode.  */
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = c->next_ino++;
+	raw_inode.pino = dir_f->ino;
+	raw_inode.version = 1;
+	raw_inode.mode = dir_mode;
+	raw_inode.uid = current->fsuid;
+	raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
+	/*	raw_inode.gid = current->fsgid; */
+	raw_inode.atime = get_seconds();
+	raw_inode.mtime = raw_inode.atime;
+	raw_inode.ctime = raw_inode.atime;
+	raw_inode.offset = 0;
+	raw_inode.dsize = 0;
+	raw_inode.rsize = 0;
+	raw_inode.nsize = dentry->d_name.len;
+	raw_inode.nlink = 1;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = 0;
+
+	/* Write the new node to the flash.  */
+	if ((result = jffs_write_node(c, node, &raw_inode,
+				     dentry->d_name.name, NULL, 0, NULL)) < 0) {
+		D(printk("jffs_mkdir(): jffs_write_node() failed.\n"));
+		jffs_free_node(node);
+		goto jffs_mkdir_end;
+	}
+
+	/* Insert the new node into the file system.  */
+	if ((result = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name,
+				       node)) < 0) {
+		goto jffs_mkdir_end;
+	}
+
+	inode = jffs_new_inode(dir, &raw_inode, &err);
+	if (inode == NULL) {
+		result = err;
+		goto jffs_mkdir_end;
+	}
+
+	inode->i_op = &jffs_dir_inode_operations;
+	inode->i_fop = &jffs_dir_operations;
+
+	mark_inode_dirty(dir);
+	d_instantiate(dentry, inode);
+
+	result = 0;
+jffs_mkdir_end:
+	D3(printk (KERN_NOTICE "mkdir(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return result;
+} /* jffs_mkdir()  */
+
+
+/* Remove a directory.  */
+static int
+jffs_rmdir(struct inode *dir, struct dentry *dentry)
+{
+	struct jffs_control *c = (struct jffs_control *)dir->i_sb->s_fs_info;
+	int ret;
+	D3(printk("***jffs_rmdir()\n"));
+	D3(printk (KERN_NOTICE "rmdir(): down biglock\n"));
+	lock_kernel();
+	down(&c->fmc->biglock);
+	ret = jffs_remove(dir, dentry, S_IFDIR);
+	D3(printk (KERN_NOTICE "rmdir(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return ret;
+}
+
+
+/* Remove any kind of file except for directories.  */
+static int
+jffs_unlink(struct inode *dir, struct dentry *dentry)
+{
+	struct jffs_control *c = (struct jffs_control *)dir->i_sb->s_fs_info;
+	int ret; 
+
+	lock_kernel();
+	D3(printk("***jffs_unlink()\n"));
+	D3(printk (KERN_NOTICE "unlink(): down biglock\n"));
+	down(&c->fmc->biglock);
+	ret = jffs_remove(dir, dentry, 0);
+	D3(printk (KERN_NOTICE "unlink(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return ret;
+}
+
+
+/* Remove a JFFS entry, i.e. plain files, directories, etc.  Here we
+   shouldn't test for free space on the device.  */
+static int
+jffs_remove(struct inode *dir, struct dentry *dentry, int type)
+{
+	struct jffs_raw_inode raw_inode;
+	struct jffs_control *c;
+	struct jffs_file *dir_f; /* The file-to-remove's parent.  */
+	struct jffs_file *del_f; /* The file to remove.  */
+	struct jffs_node *del_node;
+	struct inode *inode = NULL;
+	int result = 0;
+
+	D1({
+		int len = dentry->d_name.len;
+		const char *name = dentry->d_name.name;
+		char *_name = (char *) kmalloc(len + 1, GFP_KERNEL);
+		memcpy(_name, name, len);
+		_name[len] = '\0';
+		printk("***jffs_remove(): file = \"%s\", ino = %ld\n", _name, dentry->d_inode->i_ino);
+		kfree(_name);
+	});
+
+	dir_f = (struct jffs_file *) dir->u.generic_ip;
+	c = dir_f->c;
+
+	result = -ENOENT;
+	if (!(del_f = jffs_find_child(dir_f, dentry->d_name.name,
+				      dentry->d_name.len))) {
+		D(printk("jffs_remove(): jffs_find_child() failed.\n"));
+		goto jffs_remove_end;
+	}
+
+	if (S_ISDIR(type)) {
+		struct jffs_file *child = del_f->children;
+		while(child) {
+			if( !child->deleted ) {
+				result = -ENOTEMPTY;
+				goto jffs_remove_end;
+			}
+			child = child->sibling_next;
+		}
+	}            
+	else if (S_ISDIR(del_f->mode)) {
+		D(printk("jffs_remove(): node is a directory "
+			 "but it shouldn't be.\n"));
+		result = -EPERM;
+		goto jffs_remove_end;
+	}
+
+	inode = dentry->d_inode;
+
+	result = -EIO;
+	if (del_f->ino != inode->i_ino)
+		goto jffs_remove_end;
+
+	if (!inode->i_nlink) {
+		printk("Deleting nonexistent file inode: %lu, nlink: %d\n",
+		       inode->i_ino, inode->i_nlink);
+		inode->i_nlink=1;
+	}
+
+	/* Create a node for the deletion.  */
+	result = -ENOMEM;
+	if (!(del_node = jffs_alloc_node())) {
+		D(printk("jffs_remove(): Allocation failed!\n"));
+		goto jffs_remove_end;
+	}
+	del_node->data_offset = 0;
+	del_node->removed_size = 0;
+
+	/* Initialize the raw inode.  */
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = del_f->ino;
+	raw_inode.pino = del_f->pino;
+/*  	raw_inode.version = del_f->highest_version + 1; */
+	raw_inode.mode = del_f->mode;
+	raw_inode.uid = current->fsuid;
+	raw_inode.gid = current->fsgid;
+	raw_inode.atime = get_seconds();
+	raw_inode.mtime = del_f->mtime;
+	raw_inode.ctime = raw_inode.atime;
+	raw_inode.offset = 0;
+	raw_inode.dsize = 0;
+	raw_inode.rsize = 0;
+	raw_inode.nsize = 0;
+	raw_inode.nlink = del_f->nlink;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = 1;
+
+	/* Write the new node to the flash memory.  */
+	if (jffs_write_node(c, del_node, &raw_inode, NULL, NULL, 1, del_f) < 0) {
+		jffs_free_node(del_node);
+		result = -EIO;
+		goto jffs_remove_end;
+	}
+
+	/* Update the file.  This operation will make the file disappear
+	   from the in-memory file system structures.  */
+	jffs_insert_node(c, del_f, &raw_inode, NULL, del_node);
+
+	dir->i_ctime = dir->i_mtime = CURRENT_TIME_SEC;
+	mark_inode_dirty(dir);
+	inode->i_nlink--;
+	inode->i_ctime = dir->i_ctime;
+	mark_inode_dirty(inode);
+
+	d_delete(dentry);	/* This also frees the inode */
+
+	result = 0;
+jffs_remove_end:
+	return result;
+} /* jffs_remove()  */
+
+
+static int
+jffs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
+{
+	struct jffs_raw_inode raw_inode;
+	struct jffs_file *dir_f;
+	struct jffs_node *node = NULL;
+	struct jffs_control *c;
+	struct inode *inode;
+	int result = 0;
+	u16 data = old_encode_dev(rdev);
+	int err;
+
+	D1(printk("***jffs_mknod()\n"));
+
+	if (!old_valid_dev(rdev))
+		return -EINVAL;
+	lock_kernel();
+	dir_f = (struct jffs_file *)dir->u.generic_ip;
+	c = dir_f->c;
+
+	D3(printk (KERN_NOTICE "mknod(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	/* Create and initialize a new node.  */
+	if (!(node = jffs_alloc_node())) {
+		D(printk("jffs_mknod(): Allocation failed!\n"));
+		result = -ENOMEM;
+		goto jffs_mknod_err;
+	}
+	node->data_offset = 0;
+	node->removed_size = 0;
+
+	/* Initialize the raw inode.  */
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = c->next_ino++;
+	raw_inode.pino = dir_f->ino;
+	raw_inode.version = 1;
+	raw_inode.mode = mode;
+	raw_inode.uid = current->fsuid;
+	raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
+	/*	raw_inode.gid = current->fsgid; */
+	raw_inode.atime = get_seconds();
+	raw_inode.mtime = raw_inode.atime;
+	raw_inode.ctime = raw_inode.atime;
+	raw_inode.offset = 0;
+	raw_inode.dsize = 2;
+	raw_inode.rsize = 0;
+	raw_inode.nsize = dentry->d_name.len;
+	raw_inode.nlink = 1;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = 0;
+
+	/* Write the new node to the flash.  */
+	if ((err = jffs_write_node(c, node, &raw_inode, dentry->d_name.name,
+				   (unsigned char *)&data, 0, NULL)) < 0) {
+		D(printk("jffs_mknod(): jffs_write_node() failed.\n"));
+		result = err;
+		goto jffs_mknod_err;
+	}
+
+	/* Insert the new node into the file system.  */
+	if ((err = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name,
+				    node)) < 0) {
+		result = err;
+		goto jffs_mknod_end;
+	}
+
+	inode = jffs_new_inode(dir, &raw_inode, &err);
+	if (inode == NULL) {
+		result = err;
+		goto jffs_mknod_end;
+	}
+
+	init_special_inode(inode, mode, rdev);
+
+	d_instantiate(dentry, inode);
+
+	goto jffs_mknod_end;
+
+jffs_mknod_err:
+	if (node) {
+		jffs_free_node(node);
+	}
+
+jffs_mknod_end:
+	D3(printk (KERN_NOTICE "mknod(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return result;
+} /* jffs_mknod()  */
+
+
+static int
+jffs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
+{
+	struct jffs_raw_inode raw_inode;
+	struct jffs_control *c;
+	struct jffs_file *dir_f;
+	struct jffs_node *node;
+	struct inode *inode;
+
+	int symname_len = strlen(symname);
+	int err;
+
+	lock_kernel();
+	D1({
+		int len = dentry->d_name.len; 
+		char *_name = (char *)kmalloc(len + 1, GFP_KERNEL);
+		char *_symname = (char *)kmalloc(symname_len + 1, GFP_KERNEL);
+		memcpy(_name, dentry->d_name.name, len);
+		_name[len] = '\0';
+		memcpy(_symname, symname, symname_len);
+		_symname[symname_len] = '\0';
+		printk("***jffs_symlink(): dir = 0x%p, "
+		       "dentry->dname.name = \"%s\", "
+		       "symname = \"%s\"\n", dir, _name, _symname);
+		kfree(_name);
+		kfree(_symname);
+	});
+
+	dir_f = (struct jffs_file *)dir->u.generic_ip;
+	ASSERT(if (!dir_f) {
+		printk(KERN_ERR "jffs_symlink(): No reference to a "
+		       "jffs_file struct in inode.\n");
+		unlock_kernel();
+		return -EIO;
+	});
+
+	c = dir_f->c;
+
+	/* Create a node and initialize it as much as needed.  */
+	if (!(node = jffs_alloc_node())) {
+		D(printk("jffs_symlink(): Allocation failed: node = NULL\n"));
+		unlock_kernel();
+		return -ENOMEM;
+	}
+	D3(printk (KERN_NOTICE "symlink(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	node->data_offset = 0;
+	node->removed_size = 0;
+
+	/* Initialize the raw inode.  */
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = c->next_ino++;
+	raw_inode.pino = dir_f->ino;
+	raw_inode.version = 1;
+	raw_inode.mode = S_IFLNK | S_IRWXUGO;
+	raw_inode.uid = current->fsuid;
+	raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
+	raw_inode.atime = get_seconds();
+	raw_inode.mtime = raw_inode.atime;
+	raw_inode.ctime = raw_inode.atime;
+	raw_inode.offset = 0;
+	raw_inode.dsize = symname_len;
+	raw_inode.rsize = 0;
+	raw_inode.nsize = dentry->d_name.len;
+	raw_inode.nlink = 1;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = 0;
+
+	/* Write the new node to the flash.  */
+	if ((err = jffs_write_node(c, node, &raw_inode, dentry->d_name.name,
+				   (const unsigned char *)symname, 0, NULL)) < 0) {
+		D(printk("jffs_symlink(): jffs_write_node() failed.\n"));
+		jffs_free_node(node);
+		goto jffs_symlink_end;
+	}
+
+	/* Insert the new node into the file system.  */
+	if ((err = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name,
+				    node)) < 0) {
+		goto jffs_symlink_end;
+	}
+
+	inode = jffs_new_inode(dir, &raw_inode, &err);
+	if (inode == NULL) {
+		goto jffs_symlink_end;
+	}
+	err = 0;
+	inode->i_op = &page_symlink_inode_operations;
+	inode->i_mapping->a_ops = &jffs_address_operations;
+
+	d_instantiate(dentry, inode);
+ jffs_symlink_end:
+	D3(printk (KERN_NOTICE "symlink(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return err;
+} /* jffs_symlink()  */
+
+
+/* Create an inode inside a JFFS directory (dir) and return it.
+ *
+ * By the time this is called, we already have created
+ * the directory cache entry for the new file, but it
+ * is so far negative - it has no inode.
+ *
+ * If the create succeeds, we fill in the inode information
+ * with d_instantiate().
+ */
+static int
+jffs_create(struct inode *dir, struct dentry *dentry, int mode,
+		struct nameidata *nd)
+{
+	struct jffs_raw_inode raw_inode;
+	struct jffs_control *c;
+	struct jffs_node *node;
+	struct jffs_file *dir_f; /* JFFS representation of the directory.  */
+	struct inode *inode;
+	int err;
+
+	lock_kernel();
+	D1({
+		int len = dentry->d_name.len;
+		char *s = (char *)kmalloc(len + 1, GFP_KERNEL);
+		memcpy(s, dentry->d_name.name, len);
+		s[len] = '\0';
+		printk("jffs_create(): dir: 0x%p, name: \"%s\"\n", dir, s);
+		kfree(s);
+	});
+
+	dir_f = (struct jffs_file *)dir->u.generic_ip;
+	ASSERT(if (!dir_f) {
+		printk(KERN_ERR "jffs_create(): No reference to a "
+		       "jffs_file struct in inode.\n");
+		unlock_kernel();
+		return -EIO;
+	});
+
+	c = dir_f->c;
+
+	/* Create a node and initialize as much as needed.  */
+	if (!(node = jffs_alloc_node())) {
+		D(printk("jffs_create(): Allocation failed: node == 0\n"));
+		unlock_kernel();
+		return -ENOMEM;
+	}
+	D3(printk (KERN_NOTICE "create(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	node->data_offset = 0;
+	node->removed_size = 0;
+
+	/* Initialize the raw inode.  */
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = c->next_ino++;
+	raw_inode.pino = dir_f->ino;
+	raw_inode.version = 1;
+	raw_inode.mode = mode;
+	raw_inode.uid = current->fsuid;
+	raw_inode.gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
+	raw_inode.atime = get_seconds();
+	raw_inode.mtime = raw_inode.atime;
+	raw_inode.ctime = raw_inode.atime;
+	raw_inode.offset = 0;
+	raw_inode.dsize = 0;
+	raw_inode.rsize = 0;
+	raw_inode.nsize = dentry->d_name.len;
+	raw_inode.nlink = 1;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = 0;
+
+	/* Write the new node to the flash.  */
+	if ((err = jffs_write_node(c, node, &raw_inode,
+				   dentry->d_name.name, NULL, 0, NULL)) < 0) {
+		D(printk("jffs_create(): jffs_write_node() failed.\n"));
+		jffs_free_node(node);
+		goto jffs_create_end;
+	}
+
+	/* Insert the new node into the file system.  */
+	if ((err = jffs_insert_node(c, NULL, &raw_inode, dentry->d_name.name,
+				    node)) < 0) {
+		goto jffs_create_end;
+	}
+
+	/* Initialize an inode.  */
+	inode = jffs_new_inode(dir, &raw_inode, &err);
+	if (inode == NULL) {
+		goto jffs_create_end;
+	}
+	err = 0;
+	inode->i_op = &jffs_file_inode_operations;
+	inode->i_fop = &jffs_file_operations;
+	inode->i_mapping->a_ops = &jffs_address_operations;
+	inode->i_mapping->nrpages = 0;
+
+	d_instantiate(dentry, inode);
+ jffs_create_end:
+	D3(printk (KERN_NOTICE "create(): up biglock\n"));
+	up(&c->fmc->biglock);
+	unlock_kernel();
+	return err;
+} /* jffs_create()  */
+
+
+/* Write, append or rewrite data to an existing file.  */
+static ssize_t
+jffs_file_write(struct file *filp, const char *buf, size_t count,
+		loff_t *ppos)
+{
+	struct jffs_raw_inode raw_inode;
+	struct jffs_control *c;
+	struct jffs_file *f;
+	struct jffs_node *node;
+	struct dentry *dentry = filp->f_dentry;
+	struct inode *inode = dentry->d_inode;
+	int recoverable = 0;
+	size_t written = 0;
+	__u32 thiscount = count;
+	loff_t pos = *ppos;
+	int err;
+
+	inode = filp->f_dentry->d_inode;
+
+	D2(printk("***jffs_file_write(): inode: 0x%p (ino: %lu), "
+		  "filp: 0x%p, buf: 0x%p, count: %d\n",
+		  inode, inode->i_ino, filp, buf, count));
+
+#if 0
+	if (inode->i_sb->s_flags & MS_RDONLY) {
+		D(printk("jffs_file_write(): MS_RDONLY\n"));
+		err = -EROFS;
+		goto out_isem;
+	}
+#endif	
+	err = -EINVAL;
+
+	if (!S_ISREG(inode->i_mode)) {
+		D(printk("jffs_file_write(): inode->i_mode == 0x%08x\n",
+				inode->i_mode));
+		goto out_isem;
+	}
+
+	if (!(f = (struct jffs_file *)inode->u.generic_ip)) {
+		D(printk("jffs_file_write(): inode->u.generic_ip = 0x%p\n",
+				inode->u.generic_ip));
+		goto out_isem;
+	}
+
+	c = f->c;
+
+	/*
+	 * This will never trigger with sane page sizes.  leave it in
+	 * anyway, since I'm thinking about how to merge larger writes
+	 * (the current idea is to poke a thread that does the actual
+	 * I/O and starts by doing a down(&inode->i_sem).  then we
+	 * would need to get the page cache pages and have a list of
+	 * I/O requests and do write-merging here.
+	 * -- prumpf
+	 */
+	thiscount = min(c->fmc->max_chunk_size - sizeof(struct jffs_raw_inode), count);
+
+	D3(printk (KERN_NOTICE "file_write(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	/* Urgh. POSIX says we can do short writes if we feel like it. 
+	 * In practice, we can't. Nothing will cope. So we loop until
+	 * we're done.
+	 *
+	 * <_Anarchy_> posix and reality are not interconnected on this issue
+	 */
+	while (count) {
+		/* Things are going to be written so we could allocate and
+		   initialize the necessary data structures now.  */
+		if (!(node = jffs_alloc_node())) {
+			D(printk("jffs_file_write(): node == 0\n"));
+			err = -ENOMEM;
+			goto out;
+		}
+
+		node->data_offset = pos;
+		node->removed_size = 0;
+
+		/* Initialize the raw inode.  */
+		raw_inode.magic = JFFS_MAGIC_BITMASK;
+		raw_inode.ino = f->ino;
+		raw_inode.pino = f->pino;
+
+		raw_inode.mode = f->mode;
+
+		raw_inode.uid = f->uid;
+		raw_inode.gid = f->gid;
+		raw_inode.atime = get_seconds();
+		raw_inode.mtime = raw_inode.atime;
+		raw_inode.ctime = f->ctime;
+		raw_inode.offset = pos;
+		raw_inode.dsize = thiscount;
+		raw_inode.rsize = 0;
+		raw_inode.nsize = f->nsize;
+		raw_inode.nlink = f->nlink;
+		raw_inode.spare = 0;
+		raw_inode.rename = 0;
+		raw_inode.deleted = 0;
+
+		if (pos < f->size) {
+			node->removed_size = raw_inode.rsize = min(thiscount, (__u32)(f->size - pos));
+
+			/* If this node is going entirely over the top of old data,
+			   we can allow it to go into the reserved space, because
+			   we know that GC can reclaim the space later.
+			*/
+			if (pos + thiscount < f->size) {
+				/* If all the data we're overwriting are _real_,
+				   not just holes, then:
+				   recoverable = 1;
+				*/
+			}
+		}
+
+		/* Write the new node to the flash.  */
+		/* NOTE: We would be quite happy if jffs_write_node() wrote a
+		   smaller node than we were expecting. There's no need for it
+		   to waste the space at the end of the flash just because it's
+		   a little smaller than what we asked for. But that's a whole
+		   new can of worms which I'm not going to open this week. 
+		   -- dwmw2.
+		*/
+		if ((err = jffs_write_node(c, node, &raw_inode, f->name,
+					   (const unsigned char *)buf,
+					   recoverable, f)) < 0) {
+			D(printk("jffs_file_write(): jffs_write_node() failed.\n"));
+			jffs_free_node(node);
+			goto out;
+		}
+
+		written += err;
+		buf += err;
+		count -= err;
+		pos += err;
+
+		/* Insert the new node into the file system.  */
+		if ((err = jffs_insert_node(c, f, &raw_inode, NULL, node)) < 0) {
+			goto out;
+		}
+
+		D3(printk("jffs_file_write(): new f_pos %ld.\n", (long)pos));
+
+		thiscount = min(c->fmc->max_chunk_size - sizeof(struct jffs_raw_inode), count);
+	}
+ out:
+	D3(printk (KERN_NOTICE "file_write(): up biglock\n"));
+	up(&c->fmc->biglock);
+
+	/* Fix things in the real inode.  */
+	if (pos > inode->i_size) {
+		inode->i_size = pos;
+		inode->i_blocks = (inode->i_size + 511) >> 9;
+	}
+	inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
+	mark_inode_dirty(inode);
+	invalidate_inode_pages(inode->i_mapping);
+
+ out_isem:
+	return err;
+} /* jffs_file_write()  */
+
+static int
+jffs_prepare_write(struct file *filp, struct page *page,
+                  unsigned from, unsigned to)
+{
+	/* FIXME: we should detect some error conditions here */
+
+	/* Bugger that. We should make sure the page is uptodate */
+	if (!PageUptodate(page) && (from || to < PAGE_CACHE_SIZE))
+		return jffs_do_readpage_nolock(filp, page);
+
+	return 0;
+} /* jffs_prepare_write() */
+
+static int
+jffs_commit_write(struct file *filp, struct page *page,
+                 unsigned from, unsigned to)
+{
+       void *addr = page_address(page) + from;
+       /* XXX: PAGE_CACHE_SHIFT or PAGE_SHIFT */
+       loff_t pos = (page->index<<PAGE_CACHE_SHIFT) + from;
+
+       return jffs_file_write(filp, addr, to-from, &pos);
+} /* jffs_commit_write() */
+
+/* This is our ioctl() routine.  */
+static int
+jffs_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
+	   unsigned long arg)
+{
+	struct jffs_control *c;
+	int ret = 0;
+
+	D2(printk("***jffs_ioctl(): cmd = 0x%08x, arg = 0x%08lx\n",
+		  cmd, arg));
+
+	if (!(c = (struct jffs_control *)inode->i_sb->s_fs_info)) {
+		printk(KERN_ERR "JFFS: Bad inode in ioctl() call. "
+		       "(cmd = 0x%08x)\n", cmd);
+		return -EIO;
+	}
+	D3(printk (KERN_NOTICE "ioctl(): down biglock\n"));
+	down(&c->fmc->biglock);
+
+	switch (cmd) {
+	case JFFS_PRINT_HASH:
+		jffs_print_hash_table(c);
+		break;
+	case JFFS_PRINT_TREE:
+		jffs_print_tree(c->root, 0);
+		break;
+	case JFFS_GET_STATUS:
+		{
+			struct jffs_flash_status fst;
+			struct jffs_fmcontrol *fmc = c->fmc;
+			printk("Flash status -- ");
+			if (!access_ok(VERIFY_WRITE,
+				       (struct jffs_flash_status __user *)arg,
+				       sizeof(struct jffs_flash_status))) {
+				D(printk("jffs_ioctl(): Bad arg in "
+					 "JFFS_GET_STATUS ioctl!\n"));
+				ret = -EFAULT;
+				break;
+			}
+			fst.size = fmc->flash_size;
+			fst.used = fmc->used_size;
+			fst.dirty = fmc->dirty_size;
+			fst.begin = fmc->head->offset;
+			fst.end = fmc->tail->offset + fmc->tail->size;
+			printk("size: %d, used: %d, dirty: %d, "
+			       "begin: %d, end: %d\n",
+			       fst.size, fst.used, fst.dirty,
+			       fst.begin, fst.end);
+			if (copy_to_user((struct jffs_flash_status __user *)arg,
+					 &fst,
+					 sizeof(struct jffs_flash_status))) {
+				ret = -EFAULT;
+			}
+		}
+		break;
+	default:
+		ret = -ENOTTY;
+	}
+	D3(printk (KERN_NOTICE "ioctl(): up biglock\n"));
+	up(&c->fmc->biglock);
+	return ret;
+} /* jffs_ioctl()  */
+
+
+static struct address_space_operations jffs_address_operations = {
+	.readpage	= jffs_readpage,
+	.prepare_write	= jffs_prepare_write,
+	.commit_write	= jffs_commit_write,
+};
+
+static int jffs_fsync(struct file *f, struct dentry *d, int datasync)
+{
+	/* We currently have O_SYNC operations at all times.
+	   Do nothing.
+	*/
+	return 0;
+}
+
+
+extern int generic_file_open(struct inode *, struct file *) __attribute__((weak));
+extern loff_t generic_file_llseek(struct file *, loff_t, int) __attribute__((weak));
+
+static struct file_operations jffs_file_operations =
+{
+	.open		= generic_file_open,
+	.llseek		= generic_file_llseek,
+	.read		= generic_file_read,
+	.write		= generic_file_write,
+	.ioctl		= jffs_ioctl,
+	.mmap		= generic_file_readonly_mmap,
+	.fsync		= jffs_fsync,
+	.sendfile	= generic_file_sendfile,
+};
+
+
+static struct inode_operations jffs_file_inode_operations =
+{
+	.lookup		= jffs_lookup,          /* lookup */
+	.setattr	= jffs_setattr,
+};
+
+
+static struct file_operations jffs_dir_operations =
+{
+	.readdir	= jffs_readdir,
+};
+
+
+static struct inode_operations jffs_dir_inode_operations =
+{
+	.create		= jffs_create,
+	.lookup		= jffs_lookup,
+	.unlink		= jffs_unlink,
+	.symlink	= jffs_symlink,
+	.mkdir		= jffs_mkdir,
+	.rmdir		= jffs_rmdir,
+	.mknod		= jffs_mknod,
+	.rename		= jffs_rename,
+	.setattr	= jffs_setattr,
+};
+
+
+/* Initialize an inode for the VFS.  */
+static void
+jffs_read_inode(struct inode *inode)
+{
+	struct jffs_file *f;
+	struct jffs_control *c;
+
+	D3(printk("jffs_read_inode(): inode->i_ino == %lu\n", inode->i_ino));
+
+	if (!inode->i_sb) {
+		D(printk("jffs_read_inode(): !inode->i_sb ==> "
+			 "No super block!\n"));
+		return;
+	}
+	c = (struct jffs_control *)inode->i_sb->s_fs_info;
+	D3(printk (KERN_NOTICE "read_inode(): down biglock\n"));
+	down(&c->fmc->biglock);
+	if (!(f = jffs_find_file(c, inode->i_ino))) {
+		D(printk("jffs_read_inode(): No such inode (%lu).\n",
+			 inode->i_ino));
+		D3(printk (KERN_NOTICE "read_inode(): up biglock\n"));
+		up(&c->fmc->biglock);
+		return;
+	}
+	inode->u.generic_ip = (void *)f;
+	inode->i_mode = f->mode;
+	inode->i_nlink = f->nlink;
+	inode->i_uid = f->uid;
+	inode->i_gid = f->gid;
+	inode->i_size = f->size;
+	inode->i_atime.tv_sec = f->atime;
+	inode->i_mtime.tv_sec = f->mtime;
+	inode->i_ctime.tv_sec = f->ctime;
+	inode->i_atime.tv_nsec = 
+	inode->i_mtime.tv_nsec = 
+	inode->i_ctime.tv_nsec = 0;
+
+	inode->i_blksize = PAGE_SIZE;
+	inode->i_blocks = (inode->i_size + 511) >> 9;
+	if (S_ISREG(inode->i_mode)) {
+		inode->i_op = &jffs_file_inode_operations;
+		inode->i_fop = &jffs_file_operations;
+		inode->i_mapping->a_ops = &jffs_address_operations;
+	}
+	else if (S_ISDIR(inode->i_mode)) {
+		inode->i_op = &jffs_dir_inode_operations;
+		inode->i_fop = &jffs_dir_operations;
+	}
+	else if (S_ISLNK(inode->i_mode)) {
+		inode->i_op = &page_symlink_inode_operations;
+		inode->i_mapping->a_ops = &jffs_address_operations;
+	}
+	else {
+		/* If the node is a device of some sort, then the number of
+		   the device should be read from the flash memory and then
+		   added to the inode's i_rdev member.  */
+		u16 val;
+		jffs_read_data(f, (char *)&val, 0, 2);
+		init_special_inode(inode, inode->i_mode,
+			old_decode_dev(val));
+	}
+
+	D3(printk (KERN_NOTICE "read_inode(): up biglock\n"));
+	up(&c->fmc->biglock);
+}
+
+
+static void
+jffs_delete_inode(struct inode *inode)
+{
+	struct jffs_file *f;
+	struct jffs_control *c;
+	D3(printk("jffs_delete_inode(): inode->i_ino == %lu\n",
+		  inode->i_ino));
+
+	lock_kernel();
+	inode->i_size = 0;
+	inode->i_blocks = 0;
+	inode->u.generic_ip = NULL;
+	clear_inode(inode);
+	if (inode->i_nlink == 0) {
+		c = (struct jffs_control *) inode->i_sb->s_fs_info;
+		f = (struct jffs_file *) jffs_find_file (c, inode->i_ino);
+		jffs_possibly_delete_file(f);
+	}
+
+	unlock_kernel();
+}
+
+
+static void
+jffs_write_super(struct super_block *sb)
+{
+	struct jffs_control *c = (struct jffs_control *)sb->s_fs_info;
+	lock_kernel();
+	jffs_garbage_collect_trigger(c);
+	unlock_kernel();
+}
+
+static int jffs_remount(struct super_block *sb, int *flags, char *data)
+{
+	*flags |= MS_NODIRATIME;
+	return 0;
+}
+
+static struct super_operations jffs_ops =
+{
+	.read_inode	= jffs_read_inode,
+	.delete_inode 	= jffs_delete_inode,
+	.put_super	= jffs_put_super,
+	.write_super	= jffs_write_super,
+	.statfs		= jffs_statfs,
+	.remount_fs	= jffs_remount,
+};
+
+static struct super_block *jffs_get_sb(struct file_system_type *fs_type,
+	int flags, const char *dev_name, void *data)
+{
+	return get_sb_bdev(fs_type, flags, dev_name, data, jffs_fill_super);
+}
+
+static struct file_system_type jffs_fs_type = {
+	.owner		= THIS_MODULE,
+	.name		= "jffs",
+	.get_sb		= jffs_get_sb,
+	.kill_sb	= kill_block_super,
+	.fs_flags	= FS_REQUIRES_DEV,
+};
+
+static int __init
+init_jffs_fs(void)
+{
+	printk(KERN_INFO "JFFS version " JFFS_VERSION_STRING
+		", (C) 1999, 2000  Axis Communications AB\n");
+	
+#ifdef CONFIG_JFFS_PROC_FS
+	jffs_proc_root = proc_mkdir("jffs", proc_root_fs);
+	if (!jffs_proc_root) {
+		printk(KERN_WARNING "cannot create /proc/jffs entry\n");
+	}
+#endif
+	fm_cache = kmem_cache_create("jffs_fm", sizeof(struct jffs_fm),
+				     0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 
+				     NULL, NULL);
+	if (!fm_cache) {
+		return -ENOMEM;
+	}
+
+	node_cache = kmem_cache_create("jffs_node",sizeof(struct jffs_node),
+				       0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT, 
+				       NULL, NULL);
+	if (!node_cache) {
+		kmem_cache_destroy(fm_cache);
+		return -ENOMEM;
+	}
+
+	return register_filesystem(&jffs_fs_type);
+}
+
+static void __exit
+exit_jffs_fs(void)
+{
+	unregister_filesystem(&jffs_fs_type);
+	kmem_cache_destroy(fm_cache);
+	kmem_cache_destroy(node_cache);
+}
+
+module_init(init_jffs_fs)
+module_exit(exit_jffs_fs)
+
+MODULE_DESCRIPTION("The Journalling Flash File System");
+MODULE_AUTHOR("Axis Communications AB.");
+MODULE_LICENSE("GPL");
diff --git a/fs/jffs/intrep.c b/fs/jffs/intrep.c
new file mode 100644
index 0000000..8cc6893
--- /dev/null
+++ b/fs/jffs/intrep.c
@@ -0,0 +1,3457 @@
+/*
+ * JFFS -- Journaling Flash File System, Linux implementation.
+ *
+ * Copyright (C) 1999, 2000  Axis Communications, Inc.
+ *
+ * Created by Finn Hakansson <finn@axis.com>.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * $Id: intrep.c,v 1.102 2001/09/23 23:28:36 dwmw2 Exp $
+ *
+ * Ported to Linux 2.3.x and MTD:
+ * Copyright (C) 2000  Alexander Larsson (alex@cendio.se), Cendio Systems AB
+ *
+ */
+
+/* This file contains the code for the internal structure of the
+   Journaling Flash File System, JFFS.  */
+
+/*
+ * Todo list:
+ *
+ * memcpy_to_flash() and memcpy_from_flash() functions.
+ *
+ * Implementation of hard links.
+ *
+ * Organize the source code in a better way. Against the VFS we could
+ * have jffs_ext.c, and against the block device jffs_int.c.
+ * A better file-internal organization too.
+ *
+ * A better checksum algorithm.
+ *
+ * Consider endianness stuff. ntohl() etc.
+ *
+ * Are we handling the atime, mtime, ctime members of the inode right?
+ *
+ * Remove some duplicated code. Take a look at jffs_write_node() and
+ * jffs_rewrite_data() for instance.
+ *
+ * Implement more meaning of the nlink member in various data structures.
+ * nlink could be used in conjunction with hard links for instance.
+ *
+ * Better memory management. Allocate data structures in larger chunks
+ * if possible.
+ *
+ * If too much meta data is stored, a garbage collect should be issued.
+ * We have experienced problems with too much meta data with for instance
+ * log files.
+ *
+ * Improve the calls to jffs_ioctl(). We would like to retrieve more
+ * information to be able to debug (or to supervise) JFFS during run-time.
+ *
+ */
+
+#include <linux/config.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/jffs.h>
+#include <linux/fs.h>
+#include <linux/stat.h>
+#include <linux/pagemap.h>
+#include <asm/semaphore.h>
+#include <asm/byteorder.h>
+#include <linux/smp_lock.h>
+#include <linux/time.h>
+#include <linux/ctype.h>
+
+#include "intrep.h"
+#include "jffs_fm.h"
+
+long no_jffs_node = 0;
+static long no_jffs_file = 0;
+#if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
+long no_jffs_control = 0;
+long no_jffs_raw_inode = 0;
+long no_jffs_node_ref = 0;
+long no_jffs_fm = 0;
+long no_jffs_fmcontrol = 0;
+long no_hash = 0;
+long no_name = 0;
+#endif
+
+static int jffs_scan_flash(struct jffs_control *c);
+static int jffs_update_file(struct jffs_file *f, struct jffs_node *node);
+static int jffs_build_file(struct jffs_file *f);
+static int jffs_free_file(struct jffs_file *f);
+static int jffs_free_node_list(struct jffs_file *f);
+static int jffs_garbage_collect_now(struct jffs_control *c);
+static int jffs_insert_file_into_hash(struct jffs_file *f);
+static int jffs_remove_redundant_nodes(struct jffs_file *f);
+
+/* Is there enough space on the flash?  */
+static inline int JFFS_ENOUGH_SPACE(struct jffs_control *c, __u32 space)
+{
+	struct jffs_fmcontrol *fmc = c->fmc;
+
+	while (1) {
+		if ((fmc->flash_size - (fmc->used_size + fmc->dirty_size))
+			>= fmc->min_free_size + space) {
+			return 1;
+		}
+		if (fmc->dirty_size < fmc->sector_size)
+			return 0;
+
+		if (jffs_garbage_collect_now(c)) {
+		  D1(printk("JFFS_ENOUGH_SPACE: jffs_garbage_collect_now() failed.\n"));
+		  return 0;
+		}
+	}
+}
+
+#if CONFIG_JFFS_FS_VERBOSE > 0
+static __u8
+flash_read_u8(struct mtd_info *mtd, loff_t from)
+{
+	size_t retlen;
+	__u8 ret;
+	int res;
+
+	res = MTD_READ(mtd, from, 1, &retlen, &ret);
+	if (retlen != 1) {
+		printk("Didn't read a byte in flash_read_u8(). Returned %d\n", res);
+		return 0;
+	}
+
+	return ret;
+}
+
+static void
+jffs_hexdump(struct mtd_info *mtd, loff_t pos, int size)
+{
+	char line[16];
+	int j = 0;
+
+	while (size > 0) {
+		int i;
+
+		printk("%ld:", (long) pos);
+		for (j = 0; j < 16; j++) {
+			line[j] = flash_read_u8(mtd, pos++);
+		}
+		for (i = 0; i < j; i++) {
+			if (!(i & 1)) {
+				printk(" %.2x", line[i] & 0xff);
+			}
+			else {
+				printk("%.2x", line[i] & 0xff);
+			}
+		}
+
+		/* Print empty space */
+		for (; i < 16; i++) {
+			if (!(i & 1)) {
+				printk("   ");
+			}
+			else {
+				printk("  ");
+			}
+		}
+		printk("  ");
+
+		for (i = 0; i < j; i++) {
+			if (isgraph(line[i])) {
+				printk("%c", line[i]);
+			}
+			else {
+				printk(".");
+			}
+		}
+		printk("\n");
+		size -= 16;
+	}
+}
+
+#endif
+
+#define flash_safe_acquire(arg)
+#define flash_safe_release(arg)
+
+
+static int
+flash_safe_read(struct mtd_info *mtd, loff_t from,
+		u_char *buf, size_t count)
+{
+	size_t retlen;
+	int res;
+
+	D3(printk(KERN_NOTICE "flash_safe_read(%p, %08x, %p, %08x)\n",
+		  mtd, (unsigned int) from, buf, count));
+
+	res = MTD_READ(mtd, from, count, &retlen, buf);
+	if (retlen != count) {
+		panic("Didn't read all bytes in flash_safe_read(). Returned %d\n", res);
+	}
+	return res?res:retlen;
+}
+
+
+static __u32
+flash_read_u32(struct mtd_info *mtd, loff_t from)
+{
+	size_t retlen;
+	__u32 ret;
+	int res;
+
+	res = MTD_READ(mtd, from, 4, &retlen, (unsigned char *)&ret);
+	if (retlen != 4) {
+		printk("Didn't read all bytes in flash_read_u32(). Returned %d\n", res);
+		return 0;
+	}
+
+	return ret;
+}
+
+
+static int
+flash_safe_write(struct mtd_info *mtd, loff_t to,
+		 const u_char *buf, size_t count)
+{
+	size_t retlen;
+	int res;
+
+	D3(printk(KERN_NOTICE "flash_safe_write(%p, %08x, %p, %08x)\n",
+		  mtd, (unsigned int) to, buf, count));
+
+	res = MTD_WRITE(mtd, to, count, &retlen, buf);
+	if (retlen != count) {
+		printk("Didn't write all bytes in flash_safe_write(). Returned %d\n", res);
+	}
+	return res?res:retlen;
+}
+
+
+static int
+flash_safe_writev(struct mtd_info *mtd, const struct kvec *vecs,
+			unsigned long iovec_cnt, loff_t to)
+{
+	size_t retlen, retlen_a;
+	int i;
+	int res;
+
+	D3(printk(KERN_NOTICE "flash_safe_writev(%p, %08x, %p)\n",
+		  mtd, (unsigned int) to, vecs));
+	
+	if (mtd->writev) {
+		res = MTD_WRITEV(mtd, vecs, iovec_cnt, to, &retlen);
+		return res ? res : retlen;
+	}
+	/* Not implemented writev. Repeatedly use write - on the not so
+	   unreasonable assumption that the mtd driver doesn't care how
+	   many write cycles we use. */
+	res=0;
+	retlen=0;
+
+	for (i=0; !res && i<iovec_cnt; i++) {
+		res = MTD_WRITE(mtd, to, vecs[i].iov_len, &retlen_a, vecs[i].iov_base);
+		if (retlen_a != vecs[i].iov_len) {
+			printk("Didn't write all bytes in flash_safe_writev(). Returned %d\n", res);
+			if (i != iovec_cnt-1)
+				return -EIO;
+		}
+		/* If res is non-zero, retlen_a is undefined, but we don't
+		   care because in that case it's not going to be 
+		   returned anyway.
+		*/
+		to += retlen_a;
+		retlen += retlen_a;
+	}
+	return res?res:retlen;
+}
+
+
+static int
+flash_memset(struct mtd_info *mtd, loff_t to,
+	     const u_char c, size_t size)
+{
+	static unsigned char pattern[64];
+	int i;
+
+	/* fill up pattern */
+
+	for(i = 0; i < 64; i++)
+		pattern[i] = c;
+
+	/* write as many 64-byte chunks as we can */
+
+	while (size >= 64) {
+		flash_safe_write(mtd, to, pattern, 64);
+		size -= 64;
+		to += 64;
+	}
+
+	/* and the rest */
+
+	if(size)
+		flash_safe_write(mtd, to, pattern, size);
+
+	return size;
+}
+
+
+static void
+intrep_erase_callback(struct erase_info *done)
+{
+	wait_queue_head_t *wait_q;
+
+	wait_q = (wait_queue_head_t *)done->priv;
+
+	wake_up(wait_q);
+}
+
+
+static int
+flash_erase_region(struct mtd_info *mtd, loff_t start,
+		   size_t size)
+{
+	struct erase_info *erase;
+	DECLARE_WAITQUEUE(wait, current);
+	wait_queue_head_t wait_q;
+
+	erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL);
+	if (!erase)
+		return -ENOMEM;
+
+	init_waitqueue_head(&wait_q);
+
+	erase->mtd = mtd;
+	erase->callback = intrep_erase_callback;
+	erase->addr = start;
+	erase->len = size;
+	erase->priv = (u_long)&wait_q;
+
+	/* FIXME: Use TASK_INTERRUPTIBLE and deal with being interrupted */
+	set_current_state(TASK_UNINTERRUPTIBLE);
+	add_wait_queue(&wait_q, &wait);
+
+	if (MTD_ERASE(mtd, erase) < 0) {
+		set_current_state(TASK_RUNNING);
+		remove_wait_queue(&wait_q, &wait);
+		kfree(erase);
+
+		printk(KERN_WARNING "flash: erase of region [0x%lx, 0x%lx] "
+		       "totally failed\n", (long)start, (long)start + size);
+
+		return -1;
+	}
+
+	schedule(); /* Wait for flash to finish. */
+	remove_wait_queue(&wait_q, &wait);
+
+	kfree(erase);
+
+	return 0;
+}
+
+/* This routine calculates checksums in JFFS.  */
+static __u32
+jffs_checksum(const void *data, int size)
+{
+	__u32 sum = 0;
+	__u8 *ptr = (__u8 *)data;
+	while (size-- > 0) {
+		sum += *ptr++;
+	}
+	D3(printk(", result: 0x%08x\n", sum));
+	return sum;
+}
+
+
+static int
+jffs_checksum_flash(struct mtd_info *mtd, loff_t start, int size, __u32 *result)
+{
+	__u32 sum = 0;
+	loff_t ptr = start;
+	__u8 *read_buf;
+	int i, length;
+
+	/* Allocate read buffer */
+	read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096, GFP_KERNEL);
+	if (!read_buf) {
+		printk(KERN_NOTICE "kmalloc failed in jffs_checksum_flash()\n");
+		return -ENOMEM;
+	}
+	/* Loop until checksum done */
+	while (size) {
+		/* Get amount of data to read */
+		if (size < 4096)
+			length = size;
+		else
+			length = 4096;
+
+		/* Perform flash read */
+		D3(printk(KERN_NOTICE "jffs_checksum_flash\n"));
+		flash_safe_read(mtd, ptr, &read_buf[0], length);
+
+		/* Compute checksum */
+		for (i=0; i < length ; i++)
+			sum += read_buf[i];
+
+		/* Update pointer and size */
+		size -= length;
+		ptr += length;
+	}
+
+	/* Free read buffer */
+	kfree (read_buf);
+
+	/* Return result */
+	D3(printk("checksum result: 0x%08x\n", sum));
+	*result = sum;
+	return 0;
+}
+
+static __inline__ void jffs_fm_write_lock(struct jffs_fmcontrol *fmc)
+{
+  //	down(&fmc->wlock);
+}
+
+static __inline__ void jffs_fm_write_unlock(struct jffs_fmcontrol *fmc)
+{
+  //	up(&fmc->wlock);
+}
+
+
+/* Create and initialize a new struct jffs_file.  */
+static struct jffs_file *
+jffs_create_file(struct jffs_control *c,
+		 const struct jffs_raw_inode *raw_inode)
+{
+	struct jffs_file *f;
+
+	if (!(f = (struct jffs_file *)kmalloc(sizeof(struct jffs_file),
+					      GFP_KERNEL))) {
+		D(printk("jffs_create_file(): Failed!\n"));
+		return NULL;
+	}
+	no_jffs_file++;
+	memset(f, 0, sizeof(struct jffs_file));
+	f->ino = raw_inode->ino;
+	f->pino = raw_inode->pino;
+	f->nlink = raw_inode->nlink;
+	f->deleted = raw_inode->deleted;
+	f->c = c;
+
+	return f;
+}
+
+
+/* Build a control block for the file system.  */
+static struct jffs_control *
+jffs_create_control(struct super_block *sb)
+{
+	struct jffs_control *c;
+	register int s = sizeof(struct jffs_control);
+	int i;
+	D(char *t = 0);
+
+	D2(printk("jffs_create_control()\n"));
+
+	if (!(c = (struct jffs_control *)kmalloc(s, GFP_KERNEL))) {
+		goto fail_control;
+	}
+	DJM(no_jffs_control++);
+	c->root = NULL;
+	c->gc_task = NULL;
+	c->hash_len = JFFS_HASH_SIZE;
+	s = sizeof(struct list_head) * c->hash_len;
+	if (!(c->hash = (struct list_head *)kmalloc(s, GFP_KERNEL))) {
+		goto fail_hash;
+	}
+	DJM(no_hash++);
+	for (i = 0; i < c->hash_len; i++)
+		INIT_LIST_HEAD(&c->hash[i]);
+	if (!(c->fmc = jffs_build_begin(c, MINOR(sb->s_dev)))) {
+		goto fail_fminit;
+	}
+	c->next_ino = JFFS_MIN_INO + 1;
+	c->delete_list = (struct jffs_delete_list *) 0;
+	return c;
+
+fail_fminit:
+	D(t = "c->fmc");
+fail_hash:
+	kfree(c);
+	DJM(no_jffs_control--);
+	D(t = t ? t : "c->hash");
+fail_control:
+	D(t = t ? t : "control");
+	D(printk("jffs_create_control(): Allocation failed: (%s)\n", t));
+	return (struct jffs_control *)0;
+}
+
+
+/* Clean up all data structures associated with the file system.  */
+void
+jffs_cleanup_control(struct jffs_control *c)
+{
+	D2(printk("jffs_cleanup_control()\n"));
+
+	if (!c) {
+		D(printk("jffs_cleanup_control(): c == NULL !!!\n"));
+		return;
+	}
+
+	while (c->delete_list) {
+		struct jffs_delete_list *delete_list_element;
+		delete_list_element = c->delete_list;
+		c->delete_list = c->delete_list->next;
+		kfree(delete_list_element);
+	}
+
+	/* Free all files and nodes.  */
+	if (c->hash) {
+		jffs_foreach_file(c, jffs_free_node_list);
+		jffs_foreach_file(c, jffs_free_file);
+		kfree(c->hash);
+		DJM(no_hash--);
+	}
+	jffs_cleanup_fmcontrol(c->fmc);
+	kfree(c);
+	DJM(no_jffs_control--);
+	D3(printk("jffs_cleanup_control(): Leaving...\n"));
+}
+
+
+/* This function adds a virtual root node to the in-RAM representation.
+   Called by jffs_build_fs().  */
+static int
+jffs_add_virtual_root(struct jffs_control *c)
+{
+	struct jffs_file *root;
+	struct jffs_node *node;
+
+	D2(printk("jffs_add_virtual_root(): "
+		  "Creating a virtual root directory.\n"));
+
+	if (!(root = (struct jffs_file *)kmalloc(sizeof(struct jffs_file),
+						 GFP_KERNEL))) {
+		return -ENOMEM;
+	}
+	no_jffs_file++;
+	if (!(node = jffs_alloc_node())) {
+		kfree(root);
+		no_jffs_file--;
+		return -ENOMEM;
+	}
+	DJM(no_jffs_node++);
+	memset(node, 0, sizeof(struct jffs_node));
+	node->ino = JFFS_MIN_INO;
+	memset(root, 0, sizeof(struct jffs_file));
+	root->ino = JFFS_MIN_INO;
+	root->mode = S_IFDIR | S_IRWXU | S_IRGRP
+		     | S_IXGRP | S_IROTH | S_IXOTH;
+	root->atime = root->mtime = root->ctime = get_seconds();
+	root->nlink = 1;
+	root->c = c;
+	root->version_head = root->version_tail = node;
+	jffs_insert_file_into_hash(root);
+	return 0;
+}
+
+
+/* This is where the file system is built and initialized.  */
+int
+jffs_build_fs(struct super_block *sb)
+{
+	struct jffs_control *c;
+	int err = 0;
+
+	D2(printk("jffs_build_fs()\n"));
+
+	if (!(c = jffs_create_control(sb))) {
+		return -ENOMEM;
+	}
+	c->building_fs = 1;
+	c->sb = sb;
+	if ((err = jffs_scan_flash(c)) < 0) {
+		if(err == -EAGAIN){
+			/* scan_flash() wants us to try once more. A flipping 
+			   bits sector was detect in the middle of the scan flash.
+			   Clean up old allocated memory before going in.
+			*/
+			D1(printk("jffs_build_fs: Cleaning up all control structures,"
+				  " reallocating them and trying mount again.\n"));
+			jffs_cleanup_control(c);
+			if (!(c = jffs_create_control(sb))) {
+				return -ENOMEM;
+			}
+			c->building_fs = 1;
+			c->sb = sb;
+
+			if ((err = jffs_scan_flash(c)) < 0) {
+				goto jffs_build_fs_fail;
+			}			
+		}else{
+			goto jffs_build_fs_fail;
+		}
+	}
+
+	/* Add a virtual root node if no one exists.  */
+	if (!jffs_find_file(c, JFFS_MIN_INO)) {
+		if ((err = jffs_add_virtual_root(c)) < 0) {
+			goto jffs_build_fs_fail;
+		}
+	}
+
+	while (c->delete_list) {
+		struct jffs_file *f;
+		struct jffs_delete_list *delete_list_element;
+
+		if ((f = jffs_find_file(c, c->delete_list->ino))) {
+			f->deleted = 1;
+		}
+		delete_list_element = c->delete_list;
+		c->delete_list = c->delete_list->next;
+		kfree(delete_list_element);
+	}
+
+	/* Remove deleted nodes.  */
+	if ((err = jffs_foreach_file(c, jffs_possibly_delete_file)) < 0) {
+		printk(KERN_ERR "JFFS: Failed to remove deleted nodes.\n");
+		goto jffs_build_fs_fail;
+	}
+	/* Remove redundant nodes.  (We are not interested in the
+	   return value in this case.)  */
+	jffs_foreach_file(c, jffs_remove_redundant_nodes);
+	/* Try to build a tree from all the nodes.  */
+	if ((err = jffs_foreach_file(c, jffs_insert_file_into_tree)) < 0) {
+		printk("JFFS: Failed to build tree.\n");
+		goto jffs_build_fs_fail;
+	}
+	/* Compute the sizes of all files in the filesystem.  Adjust if
+	   necessary.  */
+	if ((err = jffs_foreach_file(c, jffs_build_file)) < 0) {
+		printk("JFFS: Failed to build file system.\n");
+		goto jffs_build_fs_fail;
+	}
+	sb->s_fs_info = (void *)c;
+	c->building_fs = 0;
+
+	D1(jffs_print_hash_table(c));
+	D1(jffs_print_tree(c->root, 0));
+
+	return 0;
+
+jffs_build_fs_fail:
+	jffs_cleanup_control(c);
+	return err;
+} /* jffs_build_fs()  */
+
+
+/*
+  This checks for sectors that were being erased in their previous 
+  lifetimes and for some reason or the other (power fail etc.), 
+  the erase cycles never completed.
+  As the flash array would have reverted back to read status, 
+  these sectors are detected by the symptom of the "flipping bits",
+  i.e. bits being read back differently from the same location in
+  flash if read multiple times.
+  The only solution to this is to re-erase the entire
+  sector.
+  Unfortunately detecting "flipping bits" is not a simple exercise
+  as a bit may be read back at 1 or 0 depending on the alignment 
+  of the stars in the universe.
+  The level of confidence is in direct proportion to the number of 
+  scans done. By power fail testing I (Vipin) have been able to 
+  proove that reading twice is not enough.
+  Maybe 4 times? Change NUM_REREADS to a higher number if you want
+  a (even) higher degree of confidence in your mount process. 
+  A higher number would of course slow down your mount.
+*/
+static int check_partly_erased_sectors(struct jffs_fmcontrol *fmc){
+
+#define NUM_REREADS             4 /* see note above */
+#define READ_AHEAD_BYTES        4096 /* must be a multiple of 4, 
+					usually set to kernel page size */
+
+	__u8 *read_buf1;
+	__u8 *read_buf2;
+
+	int err = 0;
+	int retlen;
+	int i;
+	int cnt;
+	__u32 offset;
+	loff_t pos = 0;
+	loff_t end = fmc->flash_size;
+
+
+	/* Allocate read buffers */
+	read_buf1 = (__u8 *) kmalloc (sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL);
+	if (!read_buf1)
+		return -ENOMEM;
+
+	read_buf2 = (__u8 *) kmalloc (sizeof(__u8) * READ_AHEAD_BYTES, GFP_KERNEL);
+	if (!read_buf2) {
+		kfree(read_buf1);
+		return -ENOMEM;
+	}
+
+ CHECK_NEXT:
+	while(pos < end){
+		
+		D1(printk("check_partly_erased_sector():checking sector which contains"
+			  " offset 0x%x for flipping bits..\n", (__u32)pos));
+		
+		retlen = flash_safe_read(fmc->mtd, pos,
+					 &read_buf1[0], READ_AHEAD_BYTES);
+		retlen &= ~3;
+		
+		for(cnt = 0; cnt < NUM_REREADS; cnt++){
+			(void)flash_safe_read(fmc->mtd, pos,
+					      &read_buf2[0], READ_AHEAD_BYTES);
+			
+			for (i=0 ; i < retlen ; i+=4) {
+				/* buffers MUST match, double word for word! */
+				if(*((__u32 *) &read_buf1[i]) !=
+				   *((__u32 *) &read_buf2[i])
+				   ){
+				        /* flipping bits detected, time to erase sector */
+					/* This will help us log some statistics etc. */
+					D1(printk("Flipping bits detected in re-read round:%i of %i\n",
+					       cnt, NUM_REREADS));
+					D1(printk("check_partly_erased_sectors:flipping bits detected"
+						  " @offset:0x%x(0x%x!=0x%x)\n",
+						  (__u32)pos+i, *((__u32 *) &read_buf1[i]), 
+						  *((__u32 *) &read_buf2[i])));
+					
+				        /* calculate start of present sector */
+					offset = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
+					
+					D1(printk("check_partly_erased_sector():erasing sector starting 0x%x.\n",
+						  offset));
+					
+					if (flash_erase_region(fmc->mtd,
+							       offset, fmc->sector_size) < 0) {
+						printk(KERN_ERR "JFFS: Erase of flash failed. "
+						       "offset = %u, erase_size = %d\n",
+						       offset , fmc->sector_size);
+						
+						err = -EIO;
+						goto returnBack;
+
+					}else{
+						D1(printk("JFFS: Erase of flash sector @0x%x successful.\n",
+						       offset));
+						/* skip ahead to the next sector */
+						pos = (((__u32)pos+i)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
+						pos += fmc->sector_size;
+						goto CHECK_NEXT;
+					}
+				}
+			}
+		}
+		pos += READ_AHEAD_BYTES;
+	}
+
+ returnBack:
+	kfree(read_buf1);
+	kfree(read_buf2);
+
+	D2(printk("check_partly_erased_sector():Done checking all sectors till offset 0x%x for flipping bits.\n",
+		  (__u32)pos));
+
+	return err;
+
+}/* end check_partly_erased_sectors() */
+
+
+
+/* Scan the whole flash memory in order to find all nodes in the
+   file systems.  */
+static int
+jffs_scan_flash(struct jffs_control *c)
+{
+	char name[JFFS_MAX_NAME_LEN + 2];
+	struct jffs_raw_inode raw_inode;
+	struct jffs_node *node = NULL;
+	struct jffs_fmcontrol *fmc = c->fmc;
+	__u32 checksum;
+	__u8 tmp_accurate;
+	__u16 tmp_chksum;
+	__u32 deleted_file;
+	loff_t pos = 0;
+	loff_t start;
+	loff_t test_start;
+	loff_t end = fmc->flash_size;
+	__u8 *read_buf;
+	int i, len, retlen;
+	__u32 offset;
+
+	__u32 free_chunk_size1;
+	__u32 free_chunk_size2;
+
+	
+#define NUMFREEALLOWED     2        /* 2 chunks of at least erase size space allowed */
+	int num_free_space = 0;       /* Flag err if more than TWO
+				       free blocks found. This is NOT allowed
+				       by the current jffs design.
+				    */
+	int num_free_spc_not_accp = 0; /* For debugging purposed keep count 
+					of how much free space was rejected and
+					marked dirty
+				     */
+
+	D1(printk("jffs_scan_flash(): start pos = 0x%lx, end = 0x%lx\n",
+		  (long)pos, (long)end));
+
+	flash_safe_acquire(fmc->mtd);
+
+	/*
+	  check and make sure that any sector does not suffer
+	  from the "partly erased, bit flipping syndrome" (TM Vipin :)
+	  If so, offending sectors will be erased.
+	*/
+	if(check_partly_erased_sectors(fmc) < 0){
+
+		flash_safe_release(fmc->mtd);
+		return -EIO; /* bad, bad, bad error. Cannot continue.*/
+	}
+
+	/* Allocate read buffer */
+	read_buf = (__u8 *) kmalloc (sizeof(__u8) * 4096, GFP_KERNEL);
+	if (!read_buf) {
+		flash_safe_release(fmc->mtd);
+		return -ENOMEM;
+	}
+			      
+	/* Start the scan.  */
+	while (pos < end) {
+		deleted_file = 0;
+
+		/* Remember the position from where we started this scan.  */
+		start = pos;
+
+		switch (flash_read_u32(fmc->mtd, pos)) {
+		case JFFS_EMPTY_BITMASK:
+			/* We have found 0xffffffff at this position.  We have to
+			   scan the rest of the flash till the end or till
+			   something else than 0xffffffff is found.
+		           Keep going till we do not find JFFS_EMPTY_BITMASK 
+			   anymore */
+
+			D1(printk("jffs_scan_flash(): 0xffffffff at pos 0x%lx.\n",
+				  (long)pos));
+
+		        while(pos < end){
+
+			      len = end - pos < 4096 ? end - pos : 4096;
+			      
+			      retlen = flash_safe_read(fmc->mtd, pos,
+						 &read_buf[0], len);
+
+			      retlen &= ~3;
+			      
+			      for (i=0 ; i < retlen ; i+=4, pos += 4) {
+				      if(*((__u32 *) &read_buf[i]) !=
+					 JFFS_EMPTY_BITMASK)
+					break;
+			      }
+			      if (i == retlen)
+				    continue;
+			      else
+				    break;
+			}
+
+			D1(printk("jffs_scan_flash():0xffffffff ended at pos 0x%lx.\n",
+				  (long)pos));
+			
+			/* If some free space ends in the middle of a sector,
+			   treat it as dirty rather than clean.
+			   This is to handle the case where one thread 
+			   allocated space for a node, but didn't get to
+			   actually _write_ it before power was lost, leaving
+			   a gap in the log. Shifting all node writes into
+			   a single kernel thread will fix the original problem.
+			*/
+			if ((__u32) pos % fmc->sector_size) {
+				/* If there was free space in previous 
+				   sectors, don't mark that dirty too - 
+				   only from the beginning of this sector
+				   (or from start) 
+				*/
+
+			        test_start = pos & ~(fmc->sector_size-1); /* end of last sector */
+
+				if (start < test_start) {
+
+				        /* free space started in the previous sector! */
+
+					if((num_free_space < NUMFREEALLOWED) && 
+					   ((unsigned int)(test_start - start) >= fmc->sector_size)){
+
+				                /*
+						  Count it in if we are still under NUMFREEALLOWED *and* it is 
+						  at least 1 erase sector in length. This will keep us from 
+						  picking any little ole' space as "free".
+						*/
+					  
+					        D1(printk("Reducing end of free space to 0x%x from 0x%x\n",
+							  (unsigned int)test_start, (unsigned int)pos));
+
+						D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n",
+							  (unsigned int) start,
+							  (unsigned int)(test_start - start)));
+
+						/* below, space from "start" to "pos" will be marked dirty. */
+						start = test_start; 
+						
+						/* Being in here means that we have found at least an entire 
+						   erase sector size of free space ending on a sector boundary.
+						   Keep track of free spaces accepted.
+						*/
+						num_free_space++;
+					}else{
+					        num_free_spc_not_accp++;
+					        D1(printk("Free space (#%i) found but *Not* accepted: Starting"
+							  " 0x%x for 0x%x bytes\n",
+							  num_free_spc_not_accp, (unsigned int)start, 
+							  (unsigned int)((unsigned int)(pos & ~(fmc->sector_size-1)) - (unsigned int)start)));
+					        
+					}
+					
+				}
+				if((((__u32)(pos - start)) != 0)){
+
+				        D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n",
+						  (unsigned int) start, (unsigned int) (pos - start)));
+					jffs_fmalloced(fmc, (__u32) start,
+						       (__u32) (pos - start), NULL);
+				}else{
+					/* "Flipping bits" detected. This means that our scan for them
+					   did not catch this offset. See check_partly_erased_sectors() for
+					   more info.
+					*/
+				        
+					D1(printk("jffs_scan_flash():wants to allocate dirty flash "
+						  "space for 0 bytes.\n"));
+					D1(printk("jffs_scan_flash(): Flipping bits! We will free "
+						  "all allocated memory, erase this sector and remount\n"));
+
+					/* calculate start of present sector */
+					offset = (((__u32)pos)/(__u32)fmc->sector_size) * (__u32)fmc->sector_size;
+					
+					D1(printk("jffs_scan_flash():erasing sector starting 0x%x.\n",
+						  offset));
+					
+					if (flash_erase_region(fmc->mtd,
+							       offset, fmc->sector_size) < 0) {
+						printk(KERN_ERR "JFFS: Erase of flash failed. "
+						       "offset = %u, erase_size = %d\n",
+						       offset , fmc->sector_size);
+
+						flash_safe_release(fmc->mtd);
+						kfree (read_buf);
+						return -1; /* bad, bad, bad! */
+
+					}
+					flash_safe_release(fmc->mtd);
+					kfree (read_buf);
+
+					return -EAGAIN; /* erased offending sector. Try mount one more time please. */
+				}
+			}else{
+			        /* Being in here means that we have found free space that ends on an erase sector
+				   boundary.
+				   Count it in if we are still under NUMFREEALLOWED *and* it is at least 1 erase 
+				   sector in length. This will keep us from picking any little ole' space as "free".
+				 */
+			         if((num_free_space < NUMFREEALLOWED) && 
+				    ((unsigned int)(pos - start) >= fmc->sector_size)){
+				           /* We really don't do anything to mark space as free, except *not* 
+					      mark it dirty and just advance the "pos" location pointer. 
+					      It will automatically be picked up as free space.
+					    */ 
+				           num_free_space++;
+				           D1(printk("Free space accepted: Starting 0x%x for 0x%x bytes\n",
+						     (unsigned int) start, (unsigned int) (pos - start)));
+				 }else{
+				         num_free_spc_not_accp++;
+					 D1(printk("Free space (#%i) found but *Not* accepted: Starting "
+						   "0x%x for 0x%x bytes\n", num_free_spc_not_accp, 
+						   (unsigned int) start, 
+						   (unsigned int) (pos - start)));
+					 
+					 /* Mark this space as dirty. We already have our free space. */
+					 D1(printk("Dirty space: Starting 0x%x for 0x%x bytes\n",
+						   (unsigned int) start, (unsigned int) (pos - start)));
+					 jffs_fmalloced(fmc, (__u32) start,
+							(__u32) (pos - start), NULL);				           
+				 }
+				 
+			}
+			if(num_free_space > NUMFREEALLOWED){
+			         printk(KERN_WARNING "jffs_scan_flash(): Found free space "
+					"number %i. Only %i free space is allowed.\n",
+					num_free_space, NUMFREEALLOWED);			      
+			}
+			continue;
+
+		case JFFS_DIRTY_BITMASK:
+			/* We have found 0x00000000 at this position.  Scan as far
+			   as possible to find out how much is dirty.  */
+			D1(printk("jffs_scan_flash(): 0x00000000 at pos 0x%lx.\n",
+				  (long)pos));
+			for (; pos < end
+			       && JFFS_DIRTY_BITMASK == flash_read_u32(fmc->mtd, pos);
+			     pos += 4);
+			D1(printk("jffs_scan_flash(): 0x00 ended at "
+				  "pos 0x%lx.\n", (long)pos));
+			jffs_fmalloced(fmc, (__u32) start,
+				       (__u32) (pos - start), NULL);
+			continue;
+
+		case JFFS_MAGIC_BITMASK:
+			/* We have probably found a new raw inode.  */
+			break;
+
+		default:
+		bad_inode:
+			/* We're f*cked.  This is not solved yet.  We have
+			   to scan for the magic pattern.  */
+			D1(printk("*************** Dirty flash memory or "
+				  "bad inode: "
+				  "hexdump(pos = 0x%lx, len = 128):\n",
+				  (long)pos));
+			D1(jffs_hexdump(fmc->mtd, pos, 128));
+
+			for (pos += 4; pos < end; pos += 4) {
+				switch (flash_read_u32(fmc->mtd, pos)) {
+				case JFFS_MAGIC_BITMASK:
+				case JFFS_EMPTY_BITMASK:
+					/* handle these in the main switch() loop */
+					goto cont_scan;
+
+				default:
+					break;
+				}
+			}
+
+			cont_scan:
+			/* First, mark as dirty the region
+			   which really does contain crap. */
+			jffs_fmalloced(fmc, (__u32) start,
+				       (__u32) (pos - start),
+				       NULL);
+			
+			continue;
+		}/* switch */
+
+		/* We have found the beginning of an inode.  Create a
+		   node for it unless there already is one available.  */
+		if (!node) {
+			if (!(node = jffs_alloc_node())) {
+				/* Free read buffer */
+				kfree (read_buf);
+
+				/* Release the flash device */
+				flash_safe_release(fmc->mtd);
+	
+				return -ENOMEM;
+			}
+			DJM(no_jffs_node++);
+		}
+
+		/* Read the next raw inode.  */
+
+		flash_safe_read(fmc->mtd, pos, (u_char *) &raw_inode,
+				sizeof(struct jffs_raw_inode));
+
+		/* When we compute the checksum for the inode, we never
+		   count the 'accurate' or the 'checksum' fields.  */
+		tmp_accurate = raw_inode.accurate;
+		tmp_chksum = raw_inode.chksum;
+		raw_inode.accurate = 0;
+		raw_inode.chksum = 0;
+		checksum = jffs_checksum(&raw_inode,
+					 sizeof(struct jffs_raw_inode));
+		raw_inode.accurate = tmp_accurate;
+		raw_inode.chksum = tmp_chksum;
+
+		D3(printk("*** We have found this raw inode at pos 0x%lx "
+			  "on the flash:\n", (long)pos));
+		D3(jffs_print_raw_inode(&raw_inode));
+
+		if (checksum != raw_inode.chksum) {
+			D1(printk("jffs_scan_flash(): Bad checksum: "
+				  "checksum = %u, "
+				  "raw_inode.chksum = %u\n",
+				  checksum, raw_inode.chksum));
+			pos += sizeof(struct jffs_raw_inode);
+			jffs_fmalloced(fmc, (__u32) start,
+				       (__u32) (pos - start), NULL);
+			/* Reuse this unused struct jffs_node.  */
+			continue;
+		}
+
+		/* Check the raw inode read so far.  Start with the
+		   maximum length of the filename.  */
+		if (raw_inode.nsize > JFFS_MAX_NAME_LEN) {
+			printk(KERN_WARNING "jffs_scan_flash: Found a "
+			       "JFFS node with name too large\n");
+			goto bad_inode;
+		}
+
+		if (raw_inode.rename && raw_inode.dsize != sizeof(__u32)) {
+			printk(KERN_WARNING "jffs_scan_flash: Found a "
+			       "rename node with dsize %u.\n",
+			       raw_inode.dsize);
+			jffs_print_raw_inode(&raw_inode);
+			goto bad_inode;
+		}
+
+		/* The node's data segment should not exceed a
+		   certain length.  */
+		if (raw_inode.dsize > fmc->max_chunk_size) {
+			printk(KERN_WARNING "jffs_scan_flash: Found a "
+			       "JFFS node with dsize (0x%x) > max_chunk_size (0x%x)\n",
+			       raw_inode.dsize, fmc->max_chunk_size);
+			goto bad_inode;
+		}
+
+		pos += sizeof(struct jffs_raw_inode);
+
+		/* This shouldn't be necessary because a node that
+		   violates the flash boundaries shouldn't be written
+		   in the first place. */
+		if (pos >= end) {
+			goto check_node;
+		}
+
+		/* Read the name.  */
+		*name = 0;
+		if (raw_inode.nsize) {
+		        flash_safe_read(fmc->mtd, pos, name, raw_inode.nsize);
+			name[raw_inode.nsize] = '\0';
+			pos += raw_inode.nsize
+			       + JFFS_GET_PAD_BYTES(raw_inode.nsize);
+			D3(printk("name == \"%s\"\n", name));
+			checksum = jffs_checksum(name, raw_inode.nsize);
+			if (checksum != raw_inode.nchksum) {
+				D1(printk("jffs_scan_flash(): Bad checksum: "
+					  "checksum = %u, "
+					  "raw_inode.nchksum = %u\n",
+					  checksum, raw_inode.nchksum));
+				jffs_fmalloced(fmc, (__u32) start,
+					       (__u32) (pos - start), NULL);
+				/* Reuse this unused struct jffs_node.  */
+				continue;
+			}
+			if (pos >= end) {
+				goto check_node;
+			}
+		}
+
+		/* Read the data, if it exists, in order to be sure it
+		   matches the checksum.  */
+		if (raw_inode.dsize) {
+			if (raw_inode.rename) {
+				deleted_file = flash_read_u32(fmc->mtd, pos);
+			}
+			if (jffs_checksum_flash(fmc->mtd, pos, raw_inode.dsize, &checksum)) {
+				printk("jffs_checksum_flash() failed to calculate a checksum\n");
+				jffs_fmalloced(fmc, (__u32) start,
+					       (__u32) (pos - start), NULL);
+				/* Reuse this unused struct jffs_node.  */
+				continue;
+			}				
+			pos += raw_inode.dsize
+			       + JFFS_GET_PAD_BYTES(raw_inode.dsize);
+
+			if (checksum != raw_inode.dchksum) {
+				D1(printk("jffs_scan_flash(): Bad checksum: "
+					  "checksum = %u, "
+					  "raw_inode.dchksum = %u\n",
+					  checksum, raw_inode.dchksum));
+				jffs_fmalloced(fmc, (__u32) start,
+					       (__u32) (pos - start), NULL);
+				/* Reuse this unused struct jffs_node.  */
+				continue;
+			}
+		}
+
+		check_node:
+
+		/* Remember the highest inode number in the whole file
+		   system.  This information will be used when assigning
+		   new files new inode numbers.  */
+		if (c->next_ino <= raw_inode.ino) {
+			c->next_ino = raw_inode.ino + 1;
+		}
+
+		if (raw_inode.accurate) {
+			int err;
+			node->data_offset = raw_inode.offset;
+			node->data_size = raw_inode.dsize;
+			node->removed_size = raw_inode.rsize;
+			/* Compute the offset to the actual data in the
+			   on-flash node.  */
+			node->fm_offset
+			= sizeof(struct jffs_raw_inode)
+			  + raw_inode.nsize
+			  + JFFS_GET_PAD_BYTES(raw_inode.nsize);
+			node->fm = jffs_fmalloced(fmc, (__u32) start,
+						  (__u32) (pos - start),
+						  node);
+			if (!node->fm) {
+				D(printk("jffs_scan_flash(): !node->fm\n"));
+				jffs_free_node(node);
+				DJM(no_jffs_node--);
+
+				/* Free read buffer */
+				kfree (read_buf);
+
+				/* Release the flash device */
+				flash_safe_release(fmc->mtd);
+
+				return -ENOMEM;
+			}
+			if ((err = jffs_insert_node(c, NULL, &raw_inode,
+						    name, node)) < 0) {
+				printk("JFFS: Failed to handle raw inode. "
+				       "(err = %d)\n", err);
+				break;
+			}
+			if (raw_inode.rename) {
+				struct jffs_delete_list *dl
+				= (struct jffs_delete_list *)
+				  kmalloc(sizeof(struct jffs_delete_list),
+					  GFP_KERNEL);
+				if (!dl) {
+					D(printk("jffs_scan_flash: !dl\n"));
+					jffs_free_node(node);
+					DJM(no_jffs_node--);
+
+					/* Release the flash device */
+					flash_safe_release(fmc->flash_part);
+
+					/* Free read buffer */
+					kfree (read_buf);
+
+					return -ENOMEM;
+				}
+				dl->ino = deleted_file;
+				dl->next = c->delete_list;
+				c->delete_list = dl;
+				node->data_size = 0;
+			}
+			D3(jffs_print_node(node));
+			node = NULL; /* Don't free the node!  */
+		}
+		else {
+			jffs_fmalloced(fmc, (__u32) start,
+				       (__u32) (pos - start), NULL);
+			D3(printk("jffs_scan_flash(): Just found an obsolete "
+				  "raw_inode. Continuing the scan...\n"));
+			/* Reuse this unused struct jffs_node.  */
+		}
+	}
+
+	if (node) {
+		jffs_free_node(node);
+		DJM(no_jffs_node--);
+	}
+	jffs_build_end(fmc);
+
+	/* Free read buffer */
+	kfree (read_buf);
+
+	if(!num_free_space){
+	        printk(KERN_WARNING "jffs_scan_flash(): Did not find even a single "
+		       "chunk of free space. This is BAD!\n");
+	}
+
+	/* Return happy */
+	D3(printk("jffs_scan_flash(): Leaving...\n"));
+	flash_safe_release(fmc->mtd);
+
+	/* This is to trap the "free size accounting screwed error. */
+	free_chunk_size1 = jffs_free_size1(fmc);
+	free_chunk_size2 = jffs_free_size2(fmc);
+
+	if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) {
+
+		printk(KERN_WARNING "jffs_scan_falsh():Free size accounting screwed\n");
+		printk(KERN_WARNING "jfffs_scan_flash():free_chunk_size1 == 0x%x, "
+		       "free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", 
+		       free_chunk_size1, free_chunk_size2, fmc->free_size);
+
+		return -1; /* Do NOT mount f/s so that we can inspect what happened.
+			      Mounting this  screwed up f/s will screw us up anyway.
+			    */
+	}	
+
+	return 0; /* as far as we are concerned, we are happy! */
+} /* jffs_scan_flash()  */
+
+
+/* Insert any kind of node into the file system.  Take care of data
+   insertions and deletions.  Also remove redundant information. The
+   memory allocated for the `name' is regarded as "given away" in the
+   caller's perspective.  */
+int
+jffs_insert_node(struct jffs_control *c, struct jffs_file *f,
+		 const struct jffs_raw_inode *raw_inode,
+		 const char *name, struct jffs_node *node)
+{
+	int update_name = 0;
+	int insert_into_tree = 0;
+
+	D2(printk("jffs_insert_node(): ino = %u, version = %u, "
+		  "name = \"%s\", deleted = %d\n",
+		  raw_inode->ino, raw_inode->version,
+		  ((name && *name) ? name : ""), raw_inode->deleted));
+
+	/* If there doesn't exist an associated jffs_file, then
+	   create, initialize and insert one into the file system.  */
+	if (!f && !(f = jffs_find_file(c, raw_inode->ino))) {
+		if (!(f = jffs_create_file(c, raw_inode))) {
+			return -ENOMEM;
+		}
+		jffs_insert_file_into_hash(f);
+		insert_into_tree = 1;
+	}
+	node->ino = raw_inode->ino;
+	node->version = raw_inode->version;
+	node->data_size = raw_inode->dsize;
+	node->fm_offset = sizeof(struct jffs_raw_inode) + raw_inode->nsize
+			  + JFFS_GET_PAD_BYTES(raw_inode->nsize);
+	node->name_size = raw_inode->nsize;
+
+	/* Now insert the node at the correct position into the file's
+	   version list.  */
+	if (!f->version_head) {
+		/* This is the first node.  */
+		f->version_head = node;
+		f->version_tail = node;
+		node->version_prev = NULL;
+		node->version_next = NULL;
+		f->highest_version = node->version;
+		update_name = 1;
+		f->mode = raw_inode->mode;
+		f->uid = raw_inode->uid;
+		f->gid = raw_inode->gid;
+		f->atime = raw_inode->atime;
+		f->mtime = raw_inode->mtime;
+		f->ctime = raw_inode->ctime;
+	}
+	else if ((f->highest_version < node->version)
+		 || (node->version == 0)) {
+		/* Insert at the end of the list.  I.e. this node is the
+		   newest one so far.  */
+		node->version_prev = f->version_tail;
+		node->version_next = NULL;
+		f->version_tail->version_next = node;
+		f->version_tail = node;
+		f->highest_version = node->version;
+		update_name = 1;
+		f->pino = raw_inode->pino;
+		f->mode = raw_inode->mode;
+		f->uid = raw_inode->uid;
+		f->gid = raw_inode->gid;
+		f->atime = raw_inode->atime;
+		f->mtime = raw_inode->mtime;
+		f->ctime = raw_inode->ctime;
+	}
+	else if (f->version_head->version > node->version) {
+		/* Insert at the bottom of the list.  */
+		node->version_prev = NULL;
+		node->version_next = f->version_head;
+		f->version_head->version_prev = node;
+		f->version_head = node;
+		if (!f->name) {
+			update_name = 1;
+		}
+	}
+	else {
+		struct jffs_node *n;
+		int newer_name = 0;
+		/* Search for the insertion position starting from
+		   the tail (newest node).  */
+		for (n = f->version_tail; n; n = n->version_prev) {
+			if (n->version < node->version) {
+				node->version_prev = n;
+				node->version_next = n->version_next;
+				node->version_next->version_prev = node;
+				n->version_next = node;
+				if (!newer_name) {
+					update_name = 1;
+				}
+				break;
+			}
+			if (n->name_size) {
+				newer_name = 1;
+			}
+		}
+	}
+
+	/* Deletion is irreversible. If any 'deleted' node is ever
+	   written, the file is deleted */
+	if (raw_inode->deleted)
+		f->deleted = raw_inode->deleted;
+
+	/* Perhaps update the name.  */
+	if (raw_inode->nsize && update_name && name && *name && (name != f->name)) {
+		if (f->name) {
+			kfree(f->name);
+			DJM(no_name--);
+		}
+		if (!(f->name = (char *) kmalloc(raw_inode->nsize + 1,
+						 GFP_KERNEL))) {
+			return -ENOMEM;
+		}
+		DJM(no_name++);
+		memcpy(f->name, name, raw_inode->nsize);
+		f->name[raw_inode->nsize] = '\0';
+		f->nsize = raw_inode->nsize;
+		D3(printk("jffs_insert_node(): Updated the name of "
+			  "the file to \"%s\".\n", name));
+	}
+
+	if (!c->building_fs) {
+		D3(printk("jffs_insert_node(): ---------------------------"
+			  "------------------------------------------- 1\n"));
+		if (insert_into_tree) {
+			jffs_insert_file_into_tree(f);
+		}
+		/* Once upon a time, we would call jffs_possibly_delete_file()
+		   here. That causes an oops if someone's still got the file
+		   open, so now we only do it in jffs_delete_inode()
+		   -- dwmw2
+		*/
+		if (node->data_size || node->removed_size) {
+			jffs_update_file(f, node);
+		}
+		jffs_remove_redundant_nodes(f);
+
+		jffs_garbage_collect_trigger(c);
+
+		D3(printk("jffs_insert_node(): ---------------------------"
+			  "------------------------------------------- 2\n"));
+	}
+
+	return 0;
+} /* jffs_insert_node()  */
+
+
+/* Unlink a jffs_node from the version list it is in.  */
+static inline void
+jffs_unlink_node_from_version_list(struct jffs_file *f,
+				   struct jffs_node *node)
+{
+	if (node->version_prev) {
+		node->version_prev->version_next = node->version_next;
+	} else {
+		f->version_head = node->version_next;
+	}
+	if (node->version_next) {
+		node->version_next->version_prev = node->version_prev;
+	} else {
+		f->version_tail = node->version_prev;
+	}
+}
+
+
+/* Unlink a jffs_node from the range list it is in.  */
+static inline void
+jffs_unlink_node_from_range_list(struct jffs_file *f, struct jffs_node *node)
+{
+	if (node->range_prev) {
+		node->range_prev->range_next = node->range_next;
+	}
+	else {
+		f->range_head = node->range_next;
+	}
+	if (node->range_next) {
+		node->range_next->range_prev = node->range_prev;
+	}
+	else {
+		f->range_tail = node->range_prev;
+	}
+}
+
+
+/* Function used by jffs_remove_redundant_nodes() below.  This function
+   classifies what kind of information a node adds to a file.  */
+static inline __u8
+jffs_classify_node(struct jffs_node *node)
+{
+	__u8 mod_type = JFFS_MODIFY_INODE;
+
+	if (node->name_size) {
+		mod_type |= JFFS_MODIFY_NAME;
+	}
+	if (node->data_size || node->removed_size) {
+		mod_type |= JFFS_MODIFY_DATA;
+	}
+	return mod_type;
+}
+
+
+/* Remove redundant nodes from a file.  Mark the on-flash memory
+   as dirty.  */
+static int
+jffs_remove_redundant_nodes(struct jffs_file *f)
+{
+	struct jffs_node *newest_node;
+	struct jffs_node *cur;
+	struct jffs_node *prev;
+	__u8 newest_type;
+	__u8 mod_type;
+	__u8 node_with_name_later = 0;
+
+	if (!(newest_node = f->version_tail)) {
+		return 0;
+	}
+
+	/* What does the `newest_node' modify?  */
+	newest_type = jffs_classify_node(newest_node);
+	node_with_name_later = newest_type & JFFS_MODIFY_NAME;
+
+	D3(printk("jffs_remove_redundant_nodes(): ino: %u, name: \"%s\", "
+		  "newest_type: %u\n", f->ino, (f->name ? f->name : ""),
+		  newest_type));
+
+	/* Traverse the file's nodes and determine which of them that are
+	   superfluous.  Yeah, this might look very complex at first
+	   glance but it is actually very simple.  */
+	for (cur = newest_node->version_prev; cur; cur = prev) {
+		prev = cur->version_prev;
+		mod_type = jffs_classify_node(cur);
+		if ((mod_type <= JFFS_MODIFY_INODE)
+		    || ((newest_type & JFFS_MODIFY_NAME)
+			&& (mod_type
+			    <= (JFFS_MODIFY_INODE + JFFS_MODIFY_NAME)))
+		    || (cur->data_size == 0 && cur->removed_size
+			&& !cur->version_prev && node_with_name_later)) {
+			/* Yes, this node is redundant. Remove it.  */
+			D2(printk("jffs_remove_redundant_nodes(): "
+				  "Removing node: ino: %u, version: %u, "
+				  "mod_type: %u\n", cur->ino, cur->version,
+				  mod_type));
+			jffs_unlink_node_from_version_list(f, cur);
+			jffs_fmfree(f->c->fmc, cur->fm, cur);
+			jffs_free_node(cur);
+			DJM(no_jffs_node--);
+		}
+		else {
+			node_with_name_later |= (mod_type & JFFS_MODIFY_NAME);
+		}
+	}
+
+	return 0;
+}
+
+
+/* Insert a file into the hash table.  */
+static int
+jffs_insert_file_into_hash(struct jffs_file *f)
+{
+	int i = f->ino % f->c->hash_len;
+
+	D3(printk("jffs_insert_file_into_hash(): f->ino: %u\n", f->ino));
+
+	list_add(&f->hash, &f->c->hash[i]);
+	return 0;
+}
+
+
+/* Insert a file into the file system tree.  */
+int
+jffs_insert_file_into_tree(struct jffs_file *f)
+{
+	struct jffs_file *parent;
+
+	D3(printk("jffs_insert_file_into_tree(): name: \"%s\"\n",
+		  (f->name ? f->name : "")));
+
+	if (!(parent = jffs_find_file(f->c, f->pino))) {
+		if (f->pino == 0) {
+			f->c->root = f;
+			f->parent = NULL;
+			f->sibling_prev = NULL;
+			f->sibling_next = NULL;
+			return 0;
+		}
+		else {
+			D1(printk("jffs_insert_file_into_tree(): Found "
+				  "inode with no parent and pino == %u\n",
+				  f->pino));
+			return -1;
+		}
+	}
+	f->parent = parent;
+	f->sibling_next = parent->children;
+	if (f->sibling_next) {
+		f->sibling_next->sibling_prev = f;
+	}
+	f->sibling_prev = NULL;
+	parent->children = f;
+	return 0;
+}
+
+
+/* Remove a file from the hash table.  */
+static int
+jffs_unlink_file_from_hash(struct jffs_file *f)
+{
+	D3(printk("jffs_unlink_file_from_hash(): f: 0x%p, "
+		  "ino %u\n", f, f->ino));
+
+	list_del(&f->hash);
+	return 0;
+}
+
+
+/* Just remove the file from the parent's children.  Don't free
+   any memory.  */
+int
+jffs_unlink_file_from_tree(struct jffs_file *f)
+{
+	D3(printk("jffs_unlink_file_from_tree(): ino: %d, pino: %d, name: "
+		  "\"%s\"\n", f->ino, f->pino, (f->name ? f->name : "")));
+
+	if (f->sibling_prev) {
+		f->sibling_prev->sibling_next = f->sibling_next;
+	}
+	else if (f->parent) {
+	        D3(printk("f->parent=%p\n", f->parent));
+		f->parent->children = f->sibling_next;
+	}
+	if (f->sibling_next) {
+		f->sibling_next->sibling_prev = f->sibling_prev;
+	}
+	return 0;
+}
+
+
+/* Find a file with its inode number.  */
+struct jffs_file *
+jffs_find_file(struct jffs_control *c, __u32 ino)
+{
+	struct jffs_file *f;
+	int i = ino % c->hash_len;
+	struct list_head *tmp;
+
+	D3(printk("jffs_find_file(): ino: %u\n", ino));
+
+	for (tmp = c->hash[i].next; tmp != &c->hash[i]; tmp = tmp->next) {
+		f = list_entry(tmp, struct jffs_file, hash);
+		if (ino != f->ino)
+			continue;
+		D3(printk("jffs_find_file(): Found file with ino "
+			       "%u. (name: \"%s\")\n",
+			       ino, (f->name ? f->name : ""));
+		);
+		return f;
+	}
+	D3(printk("jffs_find_file(): Didn't find file "
+			 "with ino %u.\n", ino);
+	);
+	return NULL;
+}
+
+
+/* Find a file in a directory.  We are comparing the names.  */
+struct jffs_file *
+jffs_find_child(struct jffs_file *dir, const char *name, int len)
+{
+	struct jffs_file *f;
+
+	D3(printk("jffs_find_child()\n"));
+
+	for (f = dir->children; f; f = f->sibling_next) {
+		if (!f->deleted && f->name
+		    && !strncmp(f->name, name, len)
+		    && f->name[len] == '\0') {
+			break;
+		}
+	}
+
+	D3(if (f) {
+		printk("jffs_find_child(): Found \"%s\".\n", f->name);
+	}
+	else {
+		char *copy = (char *) kmalloc(len + 1, GFP_KERNEL);
+		if (copy) {
+			memcpy(copy, name, len);
+			copy[len] = '\0';
+		}
+		printk("jffs_find_child(): Didn't find the file \"%s\".\n",
+		       (copy ? copy : ""));
+		if (copy) {
+			kfree(copy);
+		}
+	});
+
+	return f;
+}
+
+
+/* Write a raw inode that takes up a certain amount of space in the flash
+   memory.  At the end of the flash device, there is often space that is
+   impossible to use.  At these times we want to mark this space as not
+   used.  In the cases when the amount of space is greater or equal than
+   a struct jffs_raw_inode, we write a "dummy node" that takes up this
+   space.  The space after the raw inode, if it exists, is left as it is.
+   Since this space after the raw inode contains JFFS_EMPTY_BITMASK bytes,
+   we can compute the checksum of it; we don't have to manipulate it any
+   further.
+
+   If the space left on the device is less than the size of a struct
+   jffs_raw_inode, this space is filled with JFFS_DIRTY_BITMASK bytes.
+   No raw inode is written this time.  */
+static int
+jffs_write_dummy_node(struct jffs_control *c, struct jffs_fm *dirty_fm)
+{
+	struct jffs_fmcontrol *fmc = c->fmc;
+	int err;
+
+	D1(printk("jffs_write_dummy_node(): dirty_fm->offset = 0x%08x, "
+		  "dirty_fm->size = %u\n",
+		  dirty_fm->offset, dirty_fm->size));
+
+	if (dirty_fm->size >= sizeof(struct jffs_raw_inode)) {
+		struct jffs_raw_inode raw_inode;
+		memset(&raw_inode, 0, sizeof(struct jffs_raw_inode));
+		raw_inode.magic = JFFS_MAGIC_BITMASK;
+		raw_inode.dsize = dirty_fm->size
+				  - sizeof(struct jffs_raw_inode);
+		raw_inode.dchksum = raw_inode.dsize * 0xff;
+		raw_inode.chksum
+		= jffs_checksum(&raw_inode, sizeof(struct jffs_raw_inode));
+
+		if ((err = flash_safe_write(fmc->mtd,
+					    dirty_fm->offset,
+					    (u_char *)&raw_inode,
+					    sizeof(struct jffs_raw_inode)))
+		    < 0) {
+			printk(KERN_ERR "JFFS: jffs_write_dummy_node: "
+			       "flash_safe_write failed!\n");
+			return err;
+		}
+	}
+	else {
+		flash_safe_acquire(fmc->mtd);
+		flash_memset(fmc->mtd, dirty_fm->offset, 0, dirty_fm->size);
+		flash_safe_release(fmc->mtd);
+	}
+
+	D3(printk("jffs_write_dummy_node(): Leaving...\n"));
+	return 0;
+}
+
+
+/* Write a raw inode, possibly its name and possibly some data.  */
+int
+jffs_write_node(struct jffs_control *c, struct jffs_node *node,
+		struct jffs_raw_inode *raw_inode,
+		const char *name, const unsigned char *data,
+		int recoverable,
+		struct jffs_file *f)
+{
+	struct jffs_fmcontrol *fmc = c->fmc;
+	struct jffs_fm *fm;
+	struct kvec node_iovec[4];
+	unsigned long iovec_cnt;
+
+	__u32 pos;
+	int err;
+	__u32 slack = 0;
+
+	__u32 total_name_size = raw_inode->nsize
+				+ JFFS_GET_PAD_BYTES(raw_inode->nsize);
+	__u32 total_data_size = raw_inode->dsize
+				+ JFFS_GET_PAD_BYTES(raw_inode->dsize);
+	__u32 total_size = sizeof(struct jffs_raw_inode)
+			   + total_name_size + total_data_size;
+	
+	/* If this node isn't something that will eventually let
+	   GC free even more space, then don't allow it unless
+	   there's at least max_chunk_size space still available
+	*/
+	if (!recoverable)
+		slack = fmc->max_chunk_size;
+		
+
+	/* Fire the retrorockets and shoot the fruiton torpedoes, sir!  */
+
+	ASSERT(if (!node) {
+		printk("jffs_write_node(): node == NULL\n");
+		return -EINVAL;
+	});
+	ASSERT(if (raw_inode && raw_inode->nsize && !name) {
+		printk("*** jffs_write_node(): nsize = %u but name == NULL\n",
+		       raw_inode->nsize);
+		return -EINVAL;
+	});
+
+	D1(printk("jffs_write_node(): filename = \"%s\", ino = %u, "
+		  "total_size = %u\n",
+		  (name ? name : ""), raw_inode->ino,
+		  total_size));
+
+	jffs_fm_write_lock(fmc);
+
+retry:
+	fm = NULL;
+	err = 0;
+	while (!fm) {
+
+		/* Deadlocks suck. */
+		while(fmc->free_size < fmc->min_free_size + total_size + slack) {
+			jffs_fm_write_unlock(fmc);
+			if (!JFFS_ENOUGH_SPACE(c, total_size + slack))
+				return -ENOSPC;
+			jffs_fm_write_lock(fmc);
+		}
+
+		/* First try to allocate some flash memory.  */
+		err = jffs_fmalloc(fmc, total_size, node, &fm);
+		
+		if (err == -ENOSPC) {
+			/* Just out of space. GC and try again */
+			if (fmc->dirty_size < fmc->sector_size) {
+				D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) "
+					 "failed, no dirty space to GC\n", fmc,
+					 total_size));
+				return err;
+			}
+			
+			D1(printk(KERN_INFO "jffs_write_node(): Calling jffs_garbage_collect_now()\n"));
+			jffs_fm_write_unlock(fmc);
+			if ((err = jffs_garbage_collect_now(c))) {
+				D(printk("jffs_write_node(): jffs_garbage_collect_now() failed\n"));
+				return err;
+			}
+			jffs_fm_write_lock(fmc);
+			continue;
+		} 
+
+		if (err < 0) {
+			jffs_fm_write_unlock(fmc);
+
+			D(printk("jffs_write_node(): jffs_fmalloc(0x%p, %u) "
+				 "failed!\n", fmc, total_size));
+			return err;
+		}
+
+		if (!fm->nodes) {
+			/* The jffs_fm struct that we got is not good enough.
+			   Make that space dirty and try again  */
+			if ((err = jffs_write_dummy_node(c, fm)) < 0) {
+				kfree(fm);
+				DJM(no_jffs_fm--);
+				jffs_fm_write_unlock(fmc);
+				D(printk("jffs_write_node(): "
+					 "jffs_write_dummy_node(): Failed!\n"));
+				return err;
+			}
+			fm = NULL;
+		}
+	} /* while(!fm) */
+	node->fm = fm;
+
+	ASSERT(if (fm->nodes == 0) {
+		printk(KERN_ERR "jffs_write_node(): fm->nodes == 0\n");
+	});
+
+	pos = node->fm->offset;
+
+	/* Increment the version number here. We can't let the caller
+	   set it beforehand, because we might have had to do GC on a node
+	   of this file - and we'd end up reusing version numbers.
+	*/
+	if (f) {
+		raw_inode->version = f->highest_version + 1;
+		D1(printk (KERN_NOTICE "jffs_write_node(): setting version of %s to %d\n", f->name, raw_inode->version));
+
+		/* if the file was deleted, set the deleted bit in the raw inode */
+		if (f->deleted)
+			raw_inode->deleted = 1;
+	}
+
+	/* Compute the checksum for the data and name chunks.  */
+	raw_inode->dchksum = jffs_checksum(data, raw_inode->dsize);
+	raw_inode->nchksum = jffs_checksum(name, raw_inode->nsize);
+
+	/* The checksum is calculated without the chksum and accurate
+	   fields so set them to zero first.  */
+	raw_inode->accurate = 0;
+	raw_inode->chksum = 0;
+	raw_inode->chksum = jffs_checksum(raw_inode,
+					  sizeof(struct jffs_raw_inode));
+	raw_inode->accurate = 0xff;
+
+	D3(printk("jffs_write_node(): About to write this raw inode to the "
+		  "flash at pos 0x%lx:\n", (long)pos));
+	D3(jffs_print_raw_inode(raw_inode));
+
+	/* The actual raw JFFS node */
+	node_iovec[0].iov_base = (void *) raw_inode;
+	node_iovec[0].iov_len = (size_t) sizeof(struct jffs_raw_inode);
+	iovec_cnt = 1;
+
+	/* Get name and size if there is one */
+	if (raw_inode->nsize) {
+		node_iovec[iovec_cnt].iov_base = (void *) name;
+		node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->nsize;
+		iovec_cnt++;
+
+		if (JFFS_GET_PAD_BYTES(raw_inode->nsize)) {
+			static char allff[3]={255,255,255};
+			/* Add some extra padding if necessary */
+			node_iovec[iovec_cnt].iov_base = allff;
+			node_iovec[iovec_cnt].iov_len =
+				JFFS_GET_PAD_BYTES(raw_inode->nsize);
+			iovec_cnt++;
+		}
+	}
+
+	/* Get data and size if there is any */
+	if (raw_inode->dsize) {
+		node_iovec[iovec_cnt].iov_base = (void *) data;
+		node_iovec[iovec_cnt].iov_len = (size_t) raw_inode->dsize;
+		iovec_cnt++;
+		/* No need to pad this because we're not actually putting
+		   anything after it.
+		*/
+	}
+
+	if ((err = flash_safe_writev(fmc->mtd, node_iovec, iovec_cnt,
+				    pos)) < 0) {
+		jffs_fmfree_partly(fmc, fm, 0);
+		jffs_fm_write_unlock(fmc);
+		printk(KERN_ERR "JFFS: jffs_write_node: Failed to write, "
+		       "requested %i, wrote %i\n", total_size, err);
+		goto retry;
+	}
+	if (raw_inode->deleted)
+		f->deleted = 1;
+
+	jffs_fm_write_unlock(fmc);
+	D3(printk("jffs_write_node(): Leaving...\n"));
+	return raw_inode->dsize;
+} /* jffs_write_node()  */
+
+
+/* Read data from the node and write it to the buffer.  'node_offset'
+   is how much we have read from this particular node before and which
+   shouldn't be read again.  'max_size' is how much space there is in
+   the buffer.  */
+static int
+jffs_get_node_data(struct jffs_file *f, struct jffs_node *node, 
+		   unsigned char *buf,__u32 node_offset, __u32 max_size)
+{
+	struct jffs_fmcontrol *fmc = f->c->fmc;
+	__u32 pos = node->fm->offset + node->fm_offset + node_offset;
+	__u32 avail = node->data_size - node_offset;
+	__u32 r;
+
+	D2(printk("  jffs_get_node_data(): file: \"%s\", ino: %u, "
+		  "version: %u, node_offset: %u\n",
+		  f->name, node->ino, node->version, node_offset));
+
+	r = min(avail, max_size);
+	D3(printk(KERN_NOTICE "jffs_get_node_data\n"));
+	flash_safe_read(fmc->mtd, pos, buf, r);
+
+	D3(printk("  jffs_get_node_data(): Read %u byte%s.\n",
+		  r, (r == 1 ? "" : "s")));
+
+	return r;
+}
+
+
+/* Read data from the file's nodes.  Write the data to the buffer
+   'buf'.  'read_offset' tells how much data we should skip.  */
+int
+jffs_read_data(struct jffs_file *f, unsigned char *buf, __u32 read_offset,
+	       __u32 size)
+{
+	struct jffs_node *node;
+	__u32 read_data = 0; /* Total amount of read data.  */
+	__u32 node_offset = 0;
+	__u32 pos = 0; /* Number of bytes traversed.  */
+
+	D2(printk("jffs_read_data(): file = \"%s\", read_offset = %d, "
+		  "size = %u\n",
+		  (f->name ? f->name : ""), read_offset, size));
+
+	if (read_offset >= f->size) {
+		D(printk("  f->size: %d\n", f->size));
+		return 0;
+	}
+
+	/* First find the node to read data from.  */
+	node = f->range_head;
+	while (pos <= read_offset) {
+		node_offset = read_offset - pos;
+		if (node_offset >= node->data_size) {
+			pos += node->data_size;
+			node = node->range_next;
+		}
+		else {
+			break;
+		}
+	}
+
+	/* "Cats are living proof that not everything in nature
+	   has to be useful."
+	   - Garrison Keilor ('97)  */
+
+	/* Fill the buffer.  */
+	while (node && (read_data < size)) {
+		int r;
+		if (!node->fm) {
+			/* This node does not refer to real data.  */
+			r = min(size - read_data,
+				     node->data_size - node_offset);
+			memset(&buf[read_data], 0, r);
+		}
+		else if ((r = jffs_get_node_data(f, node, &buf[read_data],
+						 node_offset,
+						 size - read_data)) < 0) {
+			return r;
+		}
+		read_data += r;
+		node_offset = 0;
+		node = node->range_next;
+	}
+	D3(printk("  jffs_read_data(): Read %u bytes.\n", read_data));
+	return read_data;
+}
+
+
+/* Used for traversing all nodes in the hash table.  */
+int
+jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *))
+{
+	int pos;
+	int r;
+	int result = 0;
+
+	for (pos = 0; pos < c->hash_len; pos++) {
+		struct list_head *p, *next;
+		for (p = c->hash[pos].next; p != &c->hash[pos]; p = next) {
+			/* We need a reference to the next file in the
+			   list because `func' might remove the current
+			   file `f'.  */
+			next = p->next;
+			r = func(list_entry(p, struct jffs_file, hash));
+			if (r < 0)
+				return r;
+			result += r;
+		}
+	}
+
+	return result;
+}
+
+
+/* Free all nodes associated with a file.  */
+static int
+jffs_free_node_list(struct jffs_file *f)
+{
+	struct jffs_node *node;
+	struct jffs_node *p;
+
+	D3(printk("jffs_free_node_list(): f #%u, \"%s\"\n",
+		  f->ino, (f->name ? f->name : "")));
+	node = f->version_head;
+	while (node) {
+		p = node;
+		node = node->version_next;
+		jffs_free_node(p);
+		DJM(no_jffs_node--);
+	}
+	return 0;
+}
+
+
+/* Free a file and its name.  */
+static int
+jffs_free_file(struct jffs_file *f)
+{
+	D3(printk("jffs_free_file: f #%u, \"%s\"\n",
+		  f->ino, (f->name ? f->name : "")));
+
+	if (f->name) {
+		kfree(f->name);
+		DJM(no_name--);
+	}
+	kfree(f);
+	no_jffs_file--;
+	return 0;
+}
+
+static long
+jffs_get_file_count(void)
+{
+	return no_jffs_file;
+}
+
+/* See if a file is deleted. If so, mark that file's nodes as obsolete.  */
+int
+jffs_possibly_delete_file(struct jffs_file *f)
+{
+	struct jffs_node *n;
+
+	D3(printk("jffs_possibly_delete_file(): ino: %u\n",
+		  f->ino));
+
+	ASSERT(if (!f) {
+		printk(KERN_ERR "jffs_possibly_delete_file(): f == NULL\n");
+		return -1;
+	});
+
+	if (f->deleted) {
+		/* First try to remove all older versions.  Commence with
+		   the oldest node.  */
+		for (n = f->version_head; n; n = n->version_next) {
+			if (!n->fm) {
+				continue;
+			}
+			if (jffs_fmfree(f->c->fmc, n->fm, n) < 0) {
+				break;
+			}
+		}
+		/* Unlink the file from the filesystem.  */
+		if (!f->c->building_fs) {
+			jffs_unlink_file_from_tree(f);
+		}
+		jffs_unlink_file_from_hash(f);
+		jffs_free_node_list(f);
+		jffs_free_file(f);
+	}
+	return 0;
+}
+
+
+/* Used in conjunction with jffs_foreach_file() to count the number
+   of files in the file system.  */
+int
+jffs_file_count(struct jffs_file *f)
+{
+	return 1;
+}
+
+
+/* Build up a file's range list from scratch by going through the
+   version list.  */
+static int
+jffs_build_file(struct jffs_file *f)
+{
+	struct jffs_node *n;
+
+	D3(printk("jffs_build_file(): ino: %u, name: \"%s\"\n",
+		  f->ino, (f->name ? f->name : "")));
+
+	for (n = f->version_head; n; n = n->version_next) {
+		jffs_update_file(f, n);
+	}
+	return 0;
+}
+
+
+/* Remove an amount of data from a file. If this amount of data is
+   zero, that could mean that a node should be split in two parts.
+   We remove or change the appropriate nodes in the lists.
+
+   Starting offset of area to be removed is node->data_offset,
+   and the length of the area is in node->removed_size.   */
+static int
+jffs_delete_data(struct jffs_file *f, struct jffs_node *node)
+{
+	struct jffs_node *n;
+	__u32 offset = node->data_offset;
+	__u32 remove_size = node->removed_size;
+
+	D3(printk("jffs_delete_data(): offset = %u, remove_size = %u\n",
+		  offset, remove_size));
+
+	if (remove_size == 0
+	    && f->range_tail
+	    && f->range_tail->data_offset + f->range_tail->data_size
+	       == offset) {
+		/* A simple append; nothing to remove or no node to split.  */
+		return 0;
+	}
+
+	/* Find the node where we should begin the removal.  */
+	for (n = f->range_head; n; n = n->range_next) {
+		if (n->data_offset + n->data_size > offset) {
+			break;
+		}
+	}
+	if (!n) {
+		/* If there's no data in the file there's no data to
+		   remove either.  */
+		return 0;
+	}
+
+	if (n->data_offset > offset) {
+		/* XXX: Not implemented yet.  */
+		printk(KERN_WARNING "JFFS: An unexpected situation "
+		       "occurred in jffs_delete_data.\n");
+	}
+	else if (n->data_offset < offset) {
+		/* See if the node has to be split into two parts.  */
+		if (n->data_offset + n->data_size > offset + remove_size) {
+			/* Do the split.  */
+			struct jffs_node *new_node;
+			D3(printk("jffs_delete_data(): Split node with "
+				  "version number %u.\n", n->version));
+
+			if (!(new_node = jffs_alloc_node())) {
+				D(printk("jffs_delete_data(): -ENOMEM\n"));
+				return -ENOMEM;
+			}
+			DJM(no_jffs_node++);
+
+			new_node->ino = n->ino;
+			new_node->version = n->version;
+			new_node->data_offset = offset;
+			new_node->data_size = n->data_size - (remove_size + (offset - n->data_offset));
+			new_node->fm_offset = n->fm_offset + (remove_size + (offset - n->data_offset));
+			new_node->name_size = n->name_size;
+			new_node->fm = n->fm;
+			new_node->version_prev = n;
+			new_node->version_next = n->version_next;
+			if (new_node->version_next) {
+				new_node->version_next->version_prev
+				= new_node;
+			}
+			else {
+				f->version_tail = new_node;
+			}
+			n->version_next = new_node;
+			new_node->range_prev = n;
+			new_node->range_next = n->range_next;
+			if (new_node->range_next) {
+				new_node->range_next->range_prev = new_node;
+			}
+			else {
+				f->range_tail = new_node;
+			}
+			/* A very interesting can of worms.  */
+			n->range_next = new_node;
+			n->data_size = offset - n->data_offset;
+			if (new_node->fm)
+				jffs_add_node(new_node);
+			else {
+				D1(printk(KERN_WARNING "jffs_delete_data(): Splitting an empty node (file hold).\n!"));
+				D1(printk(KERN_WARNING "FIXME: Did dwmw2 do the right thing here?\n"));
+			}
+			n = new_node->range_next;
+			remove_size = 0;
+		}
+		else {
+			/* No.  No need to split the node.  Just remove
+			   the end of the node.  */
+			int r = min(n->data_offset + n->data_size
+					 - offset, remove_size);
+			n->data_size -= r;
+			remove_size -= r;
+			n = n->range_next;
+		}
+	}
+
+	/* Remove as many nodes as necessary.  */
+	while (n && remove_size) {
+		if (n->data_size <= remove_size) {
+			struct jffs_node *p = n;
+			remove_size -= n->data_size;
+			n = n->range_next;
+			D3(printk("jffs_delete_data(): Removing node: "
+				  "ino: %u, version: %u%s\n",
+				  p->ino, p->version,
+				  (p->fm ? "" : " (virtual)")));
+			if (p->fm) {
+				jffs_fmfree(f->c->fmc, p->fm, p);
+			}
+			jffs_unlink_node_from_range_list(f, p);
+			jffs_unlink_node_from_version_list(f, p);
+			jffs_free_node(p);
+			DJM(no_jffs_node--);
+		}
+		else {
+			n->data_size -= remove_size;
+			n->fm_offset += remove_size;
+			n->data_offset -= (node->removed_size - remove_size);
+			n = n->range_next;
+			break;
+		}
+	}
+
+	/* Adjust the following nodes' information about offsets etc.  */
+	while (n && node->removed_size) {
+		n->data_offset -= node->removed_size;
+		n = n->range_next;
+	}
+
+	if (node->removed_size > (f->size - node->data_offset)) {
+		/* It's possible that the removed_size is in fact
+		 * greater than the amount of data we actually thought
+		 * were present in the first place - some of the nodes 
+		 * which this node originally obsoleted may already have
+		 * been deleted from the flash by subsequent garbage 
+		 * collection.
+		 *
+		 * If this is the case, don't let f->size go negative.
+		 * Bad things would happen :)
+		 */
+		f->size = node->data_offset;
+	} else {
+		f->size -= node->removed_size;
+	}
+	D3(printk("jffs_delete_data(): f->size = %d\n", f->size));
+	return 0;
+} /* jffs_delete_data()  */
+
+
+/* Insert some data into a file.  Prior to the call to this function,
+   jffs_delete_data should be called.  */
+static int
+jffs_insert_data(struct jffs_file *f, struct jffs_node *node)
+{
+	D3(printk("jffs_insert_data(): node->data_offset = %u, "
+		  "node->data_size = %u, f->size = %u\n",
+		  node->data_offset, node->data_size, f->size));
+
+	/* Find the position where we should insert data.  */
+	retry:
+	if (node->data_offset == f->size) {
+		/* A simple append.  This is the most common operation.  */
+		node->range_next = NULL;
+		node->range_prev = f->range_tail;
+		if (node->range_prev) {
+			node->range_prev->range_next = node;
+		}
+		f->range_tail = node;
+		f->size += node->data_size;
+		if (!f->range_head) {
+			f->range_head = node;
+		}
+	}
+	else if (node->data_offset < f->size) {
+		/* Trying to insert data into the middle of the file.  This
+		   means no problem because jffs_delete_data() has already
+		   prepared the range list for us.  */
+		struct jffs_node *n;
+
+		/* Find the correct place for the insertion and then insert
+		   the node.  */
+		for (n = f->range_head; n; n = n->range_next) {
+			D2(printk("Cool stuff's happening!\n"));
+
+			if (n->data_offset == node->data_offset) {
+				node->range_prev = n->range_prev;
+				if (node->range_prev) {
+					node->range_prev->range_next = node;
+				}
+				else {
+					f->range_head = node;
+				}
+				node->range_next = n;
+				n->range_prev = node;
+				break;
+			}
+			ASSERT(else if (n->data_offset + n->data_size >
+					node->data_offset) {
+				printk(KERN_ERR "jffs_insert_data(): "
+				       "Couldn't find a place to insert "
+				       "the data!\n");
+				return -1;
+			});
+		}
+
+		/* Adjust later nodes' offsets etc.  */
+		n = node->range_next;
+		while (n) {
+			n->data_offset += node->data_size;
+			n = n->range_next;
+		}
+		f->size += node->data_size;
+	}
+	else if (node->data_offset > f->size) {
+		/* Okay.  This is tricky.  This means that we want to insert
+		   data at a place that is beyond the limits of the file as
+		   it is constructed right now.  This is actually a common
+		   event that for instance could occur during the mounting
+		   of the file system if a large file have been truncated,
+		   rewritten and then only partially garbage collected.  */
+
+		struct jffs_node *n;
+
+		/* We need a place holder for the data that is missing in
+		   front of this insertion.  This "virtual node" will not
+		   be associated with any space on the flash device.  */
+		struct jffs_node *virtual_node;
+		if (!(virtual_node = jffs_alloc_node())) {
+			return -ENOMEM;
+		}
+
+		D(printk("jffs_insert_data: Inserting a virtual node.\n"));
+		D(printk("  node->data_offset = %u\n", node->data_offset));
+		D(printk("  f->size = %u\n", f->size));
+
+		virtual_node->ino = node->ino;
+		virtual_node->version = node->version;
+		virtual_node->removed_size = 0;
+		virtual_node->fm_offset = 0;
+		virtual_node->name_size = 0;
+		virtual_node->fm = NULL; /* This is a virtual data holder.  */
+		virtual_node->version_prev = NULL;
+		virtual_node->version_next = NULL;
+		virtual_node->range_next = NULL;
+
+		/* Are there any data at all in the file yet?  */
+		if (f->range_head) {
+			virtual_node->data_offset
+			= f->range_tail->data_offset
+			  + f->range_tail->data_size;
+			virtual_node->data_size
+			= node->data_offset - virtual_node->data_offset;
+			virtual_node->range_prev = f->range_tail;
+			f->range_tail->range_next = virtual_node;
+		}
+		else {
+			virtual_node->data_offset = 0;
+			virtual_node->data_size = node->data_offset;
+			virtual_node->range_prev = NULL;
+			f->range_head = virtual_node;
+		}
+
+		f->range_tail = virtual_node;
+		f->size += virtual_node->data_size;
+
+		/* Insert this virtual node in the version list as well.  */
+		for (n = f->version_head; n ; n = n->version_next) {
+			if (n->version == virtual_node->version) {
+				virtual_node->version_prev = n->version_prev;
+				n->version_prev = virtual_node;
+				if (virtual_node->version_prev) {
+					virtual_node->version_prev
+					->version_next = virtual_node;
+				}
+				else {
+					f->version_head = virtual_node;
+				}
+				virtual_node->version_next = n;
+				break;
+			}
+		}
+
+		D(jffs_print_node(virtual_node));
+
+		/* Make a new try to insert the node.  */
+		goto retry;
+	}
+
+	D3(printk("jffs_insert_data(): f->size = %d\n", f->size));
+	return 0;
+}
+
+
+/* A new node (with data) has been added to the file and now the range
+   list has to be modified.  */
+static int
+jffs_update_file(struct jffs_file *f, struct jffs_node *node)
+{
+	int err;
+
+	D3(printk("jffs_update_file(): ino: %u, version: %u\n",
+		  f->ino, node->version));
+
+	if (node->data_size == 0) {
+		if (node->removed_size == 0) {
+			/* data_offset == X  */
+			/* data_size == 0  */
+			/* remove_size == 0  */
+		}
+		else {
+			/* data_offset == X  */
+			/* data_size == 0  */
+			/* remove_size != 0  */
+			if ((err = jffs_delete_data(f, node)) < 0) {
+				return err;
+			}
+		}
+	}
+	else {
+		/* data_offset == X  */
+		/* data_size != 0  */
+		/* remove_size == Y  */
+		if ((err = jffs_delete_data(f, node)) < 0) {
+			return err;
+		}
+		if ((err = jffs_insert_data(f, node)) < 0) {
+			return err;
+		}
+	}
+	return 0;
+}
+
+/* Print the contents of a node.  */
+void
+jffs_print_node(struct jffs_node *n)
+{
+	D(printk("jffs_node: 0x%p\n", n));
+	D(printk("{\n"));
+	D(printk("        0x%08x, /* version  */\n", n->version));
+	D(printk("        0x%08x, /* data_offset  */\n", n->data_offset));
+	D(printk("        0x%08x, /* data_size  */\n", n->data_size));
+	D(printk("        0x%08x, /* removed_size  */\n", n->removed_size));
+	D(printk("        0x%08x, /* fm_offset  */\n", n->fm_offset));
+	D(printk("        0x%02x,       /* name_size  */\n", n->name_size));
+	D(printk("        0x%p, /* fm,  fm->offset: %u  */\n",
+		 n->fm, (n->fm ? n->fm->offset : 0)));
+	D(printk("        0x%p, /* version_prev  */\n", n->version_prev));
+	D(printk("        0x%p, /* version_next  */\n", n->version_next));
+	D(printk("        0x%p, /* range_prev  */\n", n->range_prev));
+	D(printk("        0x%p, /* range_next  */\n", n->range_next));
+	D(printk("}\n"));
+}
+
+
+/* Print the contents of a raw inode.  */
+void
+jffs_print_raw_inode(struct jffs_raw_inode *raw_inode)
+{
+	D(printk("jffs_raw_inode: inode number: %u\n", raw_inode->ino));
+	D(printk("{\n"));
+	D(printk("        0x%08x, /* magic  */\n", raw_inode->magic));
+	D(printk("        0x%08x, /* ino  */\n", raw_inode->ino));
+	D(printk("        0x%08x, /* pino  */\n", raw_inode->pino));
+	D(printk("        0x%08x, /* version  */\n", raw_inode->version));
+	D(printk("        0x%08x, /* mode  */\n", raw_inode->mode));
+	D(printk("        0x%04x,     /* uid  */\n", raw_inode->uid));
+	D(printk("        0x%04x,     /* gid  */\n", raw_inode->gid));
+	D(printk("        0x%08x, /* atime  */\n", raw_inode->atime));
+	D(printk("        0x%08x, /* mtime  */\n", raw_inode->mtime));
+	D(printk("        0x%08x, /* ctime  */\n", raw_inode->ctime));
+	D(printk("        0x%08x, /* offset  */\n", raw_inode->offset));
+	D(printk("        0x%08x, /* dsize  */\n", raw_inode->dsize));
+	D(printk("        0x%08x, /* rsize  */\n", raw_inode->rsize));
+	D(printk("        0x%02x,       /* nsize  */\n", raw_inode->nsize));
+	D(printk("        0x%02x,       /* nlink  */\n", raw_inode->nlink));
+	D(printk("        0x%02x,       /* spare  */\n",
+		 raw_inode->spare));
+	D(printk("        %u,          /* rename  */\n",
+		 raw_inode->rename));
+	D(printk("        %u,          /* deleted  */\n",
+		 raw_inode->deleted));
+	D(printk("        0x%02x,       /* accurate  */\n",
+		 raw_inode->accurate));
+	D(printk("        0x%08x, /* dchksum  */\n", raw_inode->dchksum));
+	D(printk("        0x%04x,     /* nchksum  */\n", raw_inode->nchksum));
+	D(printk("        0x%04x,     /* chksum  */\n", raw_inode->chksum));
+	D(printk("}\n"));
+}
+
+
+/* Print the contents of a file.  */
+#if 0
+int
+jffs_print_file(struct jffs_file *f)
+{
+	D(int i);
+	D(printk("jffs_file: 0x%p\n", f));
+	D(printk("{\n"));
+	D(printk("        0x%08x, /* ino  */\n", f->ino));
+	D(printk("        0x%08x, /* pino  */\n", f->pino));
+	D(printk("        0x%08x, /* mode  */\n", f->mode));
+	D(printk("        0x%04x,     /* uid  */\n", f->uid));
+	D(printk("        0x%04x,     /* gid  */\n", f->gid));
+	D(printk("        0x%08x, /* atime  */\n", f->atime));
+	D(printk("        0x%08x, /* mtime  */\n", f->mtime));
+	D(printk("        0x%08x, /* ctime  */\n", f->ctime));
+	D(printk("        0x%02x,       /* nsize  */\n", f->nsize));
+	D(printk("        0x%02x,       /* nlink  */\n", f->nlink));
+	D(printk("        0x%02x,       /* deleted  */\n", f->deleted));
+	D(printk("        \"%s\", ", (f->name ? f->name : "")));
+	D(for (i = strlen(f->name ? f->name : ""); i < 8; ++i) {
+		printk(" ");
+	});
+	D(printk("/* name  */\n"));
+	D(printk("        0x%08x, /* size  */\n", f->size));
+	D(printk("        0x%08x, /* highest_version  */\n",
+		 f->highest_version));
+	D(printk("        0x%p, /* c  */\n", f->c));
+	D(printk("        0x%p, /* parent  */\n", f->parent));
+	D(printk("        0x%p, /* children  */\n", f->children));
+	D(printk("        0x%p, /* sibling_prev  */\n", f->sibling_prev));
+	D(printk("        0x%p, /* sibling_next  */\n", f->sibling_next));
+	D(printk("        0x%p, /* hash_prev  */\n", f->hash.prev));
+	D(printk("        0x%p, /* hash_next  */\n", f->hash.next));
+	D(printk("        0x%p, /* range_head  */\n", f->range_head));
+	D(printk("        0x%p, /* range_tail  */\n", f->range_tail));
+	D(printk("        0x%p, /* version_head  */\n", f->version_head));
+	D(printk("        0x%p, /* version_tail  */\n", f->version_tail));
+	D(printk("}\n"));
+	return 0;
+}
+#endif  /*  0  */
+
+void
+jffs_print_hash_table(struct jffs_control *c)
+{
+	int i;
+
+	printk("JFFS: Dumping the file system's hash table...\n");
+	for (i = 0; i < c->hash_len; i++) {
+		struct list_head *p;
+		for (p = c->hash[i].next; p != &c->hash[i]; p = p->next) {
+			struct jffs_file *f=list_entry(p,struct jffs_file,hash);
+			printk("*** c->hash[%u]: \"%s\" "
+			       "(ino: %u, pino: %u)\n",
+			       i, (f->name ? f->name : ""),
+			       f->ino, f->pino);
+		}
+	}
+}
+
+
+void
+jffs_print_tree(struct jffs_file *first_file, int indent)
+{
+	struct jffs_file *f;
+	char *space;
+	int dir;
+
+	if (!first_file) {
+		return;
+	}
+
+	if (!(space = (char *) kmalloc(indent + 1, GFP_KERNEL))) {
+		printk("jffs_print_tree(): Out of memory!\n");
+		return;
+	}
+
+	memset(space, ' ', indent);
+	space[indent] = '\0';
+
+	for (f = first_file; f; f = f->sibling_next) {
+		dir = S_ISDIR(f->mode);
+		printk("%s%s%s (ino: %u, highest_version: %u, size: %u)\n",
+		       space, (f->name ? f->name : ""), (dir ? "/" : ""),
+		       f->ino, f->highest_version, f->size);
+		if (dir) {
+			jffs_print_tree(f->children, indent + 2);
+		}
+	}
+
+	kfree(space);
+}
+
+
+#if defined(JFFS_MEMORY_DEBUG) && JFFS_MEMORY_DEBUG
+void
+jffs_print_memory_allocation_statistics(void)
+{
+	static long printout;
+	printk("________ Memory printout #%ld ________\n", ++printout);
+	printk("no_jffs_file = %ld\n", no_jffs_file);
+	printk("no_jffs_node = %ld\n", no_jffs_node);
+	printk("no_jffs_control = %ld\n", no_jffs_control);
+	printk("no_jffs_raw_inode = %ld\n", no_jffs_raw_inode);
+	printk("no_jffs_node_ref = %ld\n", no_jffs_node_ref);
+	printk("no_jffs_fm = %ld\n", no_jffs_fm);
+	printk("no_jffs_fmcontrol = %ld\n", no_jffs_fmcontrol);
+	printk("no_hash = %ld\n", no_hash);
+	printk("no_name = %ld\n", no_name);
+	printk("\n");
+}
+#endif
+
+
+/* Rewrite `size' bytes, and begin at `node'.  */
+static int
+jffs_rewrite_data(struct jffs_file *f, struct jffs_node *node, __u32 size)
+{
+	struct jffs_control *c = f->c;
+	struct jffs_fmcontrol *fmc = c->fmc;
+	struct jffs_raw_inode raw_inode;
+	struct jffs_node *new_node;
+	struct jffs_fm *fm;
+	__u32 pos;
+	__u32 pos_dchksum;
+	__u32 total_name_size;
+	__u32 total_data_size;
+	__u32 total_size;
+	int err;
+
+	D1(printk("***jffs_rewrite_data(): node: %u, name: \"%s\", size: %u\n",
+		  f->ino, (f->name ? f->name : "(null)"), size));
+
+	/* Create and initialize the new node.  */
+	if (!(new_node = jffs_alloc_node())) {
+		D(printk("jffs_rewrite_data(): "
+			 "Failed to allocate node.\n"));
+		return -ENOMEM;
+	}
+	DJM(no_jffs_node++);
+	new_node->data_offset = node->data_offset;
+	new_node->removed_size = size;
+	total_name_size = JFFS_PAD(f->nsize);
+	total_data_size = JFFS_PAD(size);
+	total_size = sizeof(struct jffs_raw_inode)
+		     + total_name_size + total_data_size;
+	new_node->fm_offset = sizeof(struct jffs_raw_inode)
+			      + total_name_size;
+
+retry:
+	jffs_fm_write_lock(fmc);
+	err = 0;
+
+	if ((err = jffs_fmalloc(fmc, total_size, new_node, &fm)) < 0) {
+		DJM(no_jffs_node--);
+		jffs_fm_write_unlock(fmc);
+		D(printk("jffs_rewrite_data(): Failed to allocate fm.\n"));
+		jffs_free_node(new_node);
+		return err;
+	}
+	else if (!fm->nodes) {
+		/* The jffs_fm struct that we got is not big enough.  */
+		/* This should never happen, because we deal with this case
+		   in jffs_garbage_collect_next().*/
+		printk(KERN_WARNING "jffs_rewrite_data(): Allocated node is too small (%d bytes of %d)\n", fm->size, total_size);
+		if ((err = jffs_write_dummy_node(c, fm)) < 0) {
+			D(printk("jffs_rewrite_data(): "
+				 "jffs_write_dummy_node() Failed!\n"));
+		} else {
+			err = -ENOSPC;
+		}
+		DJM(no_jffs_fm--);
+		jffs_fm_write_unlock(fmc);
+		kfree(fm);
+		
+		return err;
+	}
+	new_node->fm = fm;
+
+	/* Initialize the raw inode.  */
+	raw_inode.magic = JFFS_MAGIC_BITMASK;
+	raw_inode.ino = f->ino;
+	raw_inode.pino = f->pino;
+	raw_inode.version = f->highest_version + 1;
+	raw_inode.mode = f->mode;
+	raw_inode.uid = f->uid;
+	raw_inode.gid = f->gid;
+	raw_inode.atime = f->atime;
+	raw_inode.mtime = f->mtime;
+	raw_inode.ctime = f->ctime;
+	raw_inode.offset = node->data_offset;
+	raw_inode.dsize = size;
+	raw_inode.rsize = size;
+	raw_inode.nsize = f->nsize;
+	raw_inode.nlink = f->nlink;
+	raw_inode.spare = 0;
+	raw_inode.rename = 0;
+	raw_inode.deleted = f->deleted;
+	raw_inode.accurate = 0xff;
+	raw_inode.dchksum = 0;
+	raw_inode.nchksum = 0;
+
+	pos = new_node->fm->offset;
+	pos_dchksum = pos +JFFS_RAW_INODE_DCHKSUM_OFFSET;
+
+	D3(printk("jffs_rewrite_data(): Writing this raw inode "
+		  "to pos 0x%ul.\n", pos));
+	D3(jffs_print_raw_inode(&raw_inode));
+
+	if ((err = flash_safe_write(fmc->mtd, pos,
+				    (u_char *) &raw_inode,
+				    sizeof(struct jffs_raw_inode)
+				    - sizeof(__u32)
+				    - sizeof(__u16) - sizeof(__u16))) < 0) {
+		jffs_fmfree_partly(fmc, fm,
+				   total_name_size + total_data_size);
+		jffs_fm_write_unlock(fmc);
+		printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during "
+			"rewrite. (raw inode)\n");
+		printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying "
+			"rewrite. (raw inode)\n");
+		goto retry;
+	}
+	pos += sizeof(struct jffs_raw_inode);
+
+	/* Write the name to the flash memory.  */
+	if (f->nsize) {
+		D3(printk("jffs_rewrite_data(): Writing name \"%s\" to "
+			  "pos 0x%ul.\n", f->name, (unsigned int) pos));
+		if ((err = flash_safe_write(fmc->mtd, pos,
+					    (u_char *)f->name,
+					    f->nsize)) < 0) {
+			jffs_fmfree_partly(fmc, fm, total_data_size);
+			jffs_fm_write_unlock(fmc);
+			printk(KERN_ERR "JFFS: jffs_rewrite_data: Write "
+				"error during rewrite. (name)\n");
+			printk(KERN_ERR "JFFS: jffs_rewrite_data: Now retrying "
+				"rewrite. (name)\n");
+			goto retry;
+		}
+		pos += total_name_size;
+		raw_inode.nchksum = jffs_checksum(f->name, f->nsize);
+	}
+
+	/* Write the data.  */
+	if (size) {
+		int r;
+		unsigned char *page;
+		__u32 offset = node->data_offset;
+
+		if (!(page = (unsigned char *)__get_free_page(GFP_KERNEL))) {
+			jffs_fmfree_partly(fmc, fm, 0);
+			return -1;
+		}
+
+		while (size) {
+			__u32 s = min(size, (__u32)PAGE_SIZE);
+			if ((r = jffs_read_data(f, (char *)page,
+						offset, s)) < s) {
+				free_page((unsigned long)page);
+				jffs_fmfree_partly(fmc, fm, 0);
+				jffs_fm_write_unlock(fmc);
+				printk(KERN_ERR "JFFS: jffs_rewrite_data: "
+					 "jffs_read_data() "
+					 "failed! (r = %d)\n", r);
+				return -1;
+			}
+			if ((err = flash_safe_write(fmc->mtd,
+						    pos, page, r)) < 0) {
+				free_page((unsigned long)page);
+				jffs_fmfree_partly(fmc, fm, 0);
+				jffs_fm_write_unlock(fmc);
+				printk(KERN_ERR "JFFS: jffs_rewrite_data: "
+				       "Write error during rewrite. "
+				       "(data)\n");
+				goto retry;
+			}
+			pos += r;
+			size -= r;
+			offset += r;
+			raw_inode.dchksum += jffs_checksum(page, r);
+		}
+
+	        free_page((unsigned long)page);
+	}
+
+	raw_inode.accurate = 0;
+	raw_inode.chksum = jffs_checksum(&raw_inode,
+					 sizeof(struct jffs_raw_inode)
+					 - sizeof(__u16));
+
+	/* Add the checksum.  */
+	if ((err
+	     = flash_safe_write(fmc->mtd, pos_dchksum,
+				&((u_char *)
+				&raw_inode)[JFFS_RAW_INODE_DCHKSUM_OFFSET],
+				sizeof(__u32) + sizeof(__u16)
+				+ sizeof(__u16))) < 0) {
+		jffs_fmfree_partly(fmc, fm, 0);
+		jffs_fm_write_unlock(fmc);
+		printk(KERN_ERR "JFFS: jffs_rewrite_data: Write error during "
+		       "rewrite. (checksum)\n");
+		goto retry;
+	}
+
+	/* Now make the file system aware of the newly written node.  */
+	jffs_insert_node(c, f, &raw_inode, f->name, new_node);
+	jffs_fm_write_unlock(fmc);
+
+	D3(printk("jffs_rewrite_data(): Leaving...\n"));
+	return 0;
+} /* jffs_rewrite_data()  */
+
+
+/* jffs_garbage_collect_next implements one step in the garbage collect
+   process and is often called multiple times at each occasion of a
+   garbage collect.  */
+
+static int
+jffs_garbage_collect_next(struct jffs_control *c)
+{
+	struct jffs_fmcontrol *fmc = c->fmc;
+	struct jffs_node *node;
+	struct jffs_file *f;
+	int err = 0;
+	__u32 size;
+	__u32 data_size;
+	__u32 total_name_size;
+	__u32 extra_available;
+	__u32 space_needed;
+	__u32 free_chunk_size1 = jffs_free_size1(fmc);
+	D2(__u32 free_chunk_size2 = jffs_free_size2(fmc));
+
+	/* Get the oldest node in the flash.  */
+	node = jffs_get_oldest_node(fmc);
+	ASSERT(if (!node) {
+		printk(KERN_ERR "JFFS: jffs_garbage_collect_next: "
+		       "No oldest node found!\n");
+                err = -1;
+                goto jffs_garbage_collect_next_end;
+		
+
+	});
+
+	/* Find its corresponding file too.  */
+	f = jffs_find_file(c, node->ino);
+
+	if (!f) {
+	  printk (KERN_ERR "JFFS: jffs_garbage_collect_next: "
+                  "No file to garbage collect! "
+		  "(ino = 0x%08x)\n", node->ino);
+          /* FIXME: Free the offending node and recover. */
+          err = -1;
+          goto jffs_garbage_collect_next_end;
+	}
+
+	/* We always write out the name. Theoretically, we don't need
+	   to, but for now it's easier - because otherwise we'd have
+	   to keep track of how many times the current name exists on
+	   the flash and make sure it never reaches zero.
+
+	   The current approach means that would be possible to cause
+	   the GC to end up eating its tail by writing lots of nodes
+	   with no name for it to garbage-collect. Hence the change in
+	   inode.c to write names with _every_ node.
+
+	   It sucks, but it _should_ work.
+	*/
+	total_name_size = JFFS_PAD(f->nsize);
+
+	D1(printk("jffs_garbage_collect_next(): \"%s\", "
+		  "ino: %u, version: %u, location 0x%x, dsize %u\n",
+		  (f->name ? f->name : ""), node->ino, node->version, 
+		  node->fm->offset, node->data_size));
+
+	/* Compute how many data it's possible to rewrite at the moment.  */
+	data_size = f->size - node->data_offset;
+
+	/* And from that, the total size of the chunk we want to write */
+	size = sizeof(struct jffs_raw_inode) + total_name_size
+	       + data_size + JFFS_GET_PAD_BYTES(data_size);
+
+	/* If that's more than max_chunk_size, reduce it accordingly */
+	if (size > fmc->max_chunk_size) {
+		size = fmc->max_chunk_size;
+		data_size = size - sizeof(struct jffs_raw_inode)
+			    - total_name_size;
+	}
+
+	/* If we're asking to take up more space than free_chunk_size1
+	   but we _could_ fit in it, shrink accordingly.
+	*/
+	if (size > free_chunk_size1) {
+
+		if (free_chunk_size1 <
+		    (sizeof(struct jffs_raw_inode) + total_name_size + BLOCK_SIZE)){
+			/* The space left is too small to be of any
+			   use really.  */
+			struct jffs_fm *dirty_fm
+			= jffs_fmalloced(fmc,
+					 fmc->tail->offset + fmc->tail->size,
+					 free_chunk_size1, NULL);
+			if (!dirty_fm) {
+				printk(KERN_ERR "JFFS: "
+				       "jffs_garbage_collect_next: "
+				       "Failed to allocate `dirty' "
+				       "flash memory!\n");
+				err = -1;
+                                goto jffs_garbage_collect_next_end;
+			}
+			D1(printk("Dirtying end of flash - too small\n"));
+			jffs_write_dummy_node(c, dirty_fm);
+                        err = 0;
+			goto jffs_garbage_collect_next_end;
+		}
+		D1(printk("Reducing size of new node from %d to %d to avoid "
+			  " exceeding free_chunk_size1\n",
+			  size, free_chunk_size1));
+
+		size = free_chunk_size1;
+		data_size = size - sizeof(struct jffs_raw_inode)
+			    - total_name_size;
+	}
+
+
+	/* Calculate the amount of space needed to hold the nodes
+	   which are remaining in the tail */
+	space_needed = fmc->min_free_size - (node->fm->offset % fmc->sector_size);
+
+	/* From that, calculate how much 'extra' space we can use to
+	   increase the size of the node we're writing from the size
+	   of the node we're obsoleting
+	*/
+	if (space_needed > fmc->free_size) {
+		/* If we've gone below min_free_size for some reason,
+		   don't fuck up. This is why we have 
+		   min_free_size > sector_size. Whinge about it though,
+		   just so I can convince myself my maths is right.
+		*/
+		D1(printk(KERN_WARNING "jffs_garbage_collect_next(): "
+			  "space_needed %d exceeded free_size %d\n",
+			  space_needed, fmc->free_size));
+		extra_available = 0;
+	} else {
+		extra_available = fmc->free_size - space_needed;
+	}
+
+	/* Check that we don't use up any more 'extra' space than
+	   what's available */
+	if (size > JFFS_PAD(node->data_size) + total_name_size + 
+	    sizeof(struct jffs_raw_inode) + extra_available) {
+		D1(printk("Reducing size of new node from %d to %ld to avoid "
+		       "catching our tail\n", size, 
+			  (long) (JFFS_PAD(node->data_size) + JFFS_PAD(node->name_size) + 
+			  sizeof(struct jffs_raw_inode) + extra_available)));
+		D1(printk("space_needed = %d, extra_available = %d\n", 
+			  space_needed, extra_available));
+
+		size = JFFS_PAD(node->data_size) + total_name_size + 
+		  sizeof(struct jffs_raw_inode) + extra_available;
+		data_size = size - sizeof(struct jffs_raw_inode)
+			- total_name_size;
+	};
+
+	D2(printk("  total_name_size: %u\n", total_name_size));
+	D2(printk("  data_size: %u\n", data_size));
+	D2(printk("  size: %u\n", size));
+	D2(printk("  f->nsize: %u\n", f->nsize));
+	D2(printk("  f->size: %u\n", f->size));
+	D2(printk("  node->data_offset: %u\n", node->data_offset));
+	D2(printk("  free_chunk_size1: %u\n", free_chunk_size1));
+	D2(printk("  free_chunk_size2: %u\n", free_chunk_size2));
+	D2(printk("  node->fm->offset: 0x%08x\n", node->fm->offset));
+
+	if ((err = jffs_rewrite_data(f, node, data_size))) {
+		printk(KERN_WARNING "jffs_rewrite_data() failed: %d\n", err);
+		return err;
+	}
+	  
+jffs_garbage_collect_next_end:
+	D3(printk("jffs_garbage_collect_next: Leaving...\n"));
+	return err;
+} /* jffs_garbage_collect_next */
+
+
+/* If an obsolete node is partly going to be erased due to garbage
+   collection, the part that isn't going to be erased must be filled
+   with zeroes so that the scan of the flash will work smoothly next
+   time.  (The data in the file could for instance be a JFFS image
+   which could cause enormous confusion during a scan of the flash
+   device if we didn't do this.)
+     There are two phases in this procedure: First, the clearing of
+   the name and data parts of the node. Second, possibly also clearing
+   a part of the raw inode as well.  If the box is power cycled during
+   the first phase, only the checksum of this node-to-be-cleared-at-
+   the-end will be wrong.  If the box is power cycled during, or after,
+   the clearing of the raw inode, the information like the length of
+   the name and data parts are zeroed.  The next time the box is
+   powered up, the scanning algorithm manages this faulty data too
+   because:
+
+   - The checksum is invalid and thus the raw inode must be discarded
+     in any case.
+   - If the lengths of the data part or the name part are zeroed, the
+     scanning just continues after the raw inode.  But after the inode
+     the scanning procedure just finds zeroes which is the same as
+     dirt.
+
+   So, in the end, this could never fail. :-)  Even if it does fail,
+   the scanning algorithm should manage that too.  */
+
+static int
+jffs_clear_end_of_node(struct jffs_control *c, __u32 erase_size)
+{
+	struct jffs_fm *fm;
+	struct jffs_fmcontrol *fmc = c->fmc;
+	__u32 zero_offset;
+	__u32 zero_size;
+	__u32 zero_offset_data;
+	__u32 zero_size_data;
+	__u32 cutting_raw_inode = 0;
+
+	if (!(fm = jffs_cut_node(fmc, erase_size))) {
+		D3(printk("jffs_clear_end_of_node(): fm == NULL\n"));
+		return 0;
+	}
+
+	/* Where and how much shall we clear?  */
+	zero_offset = fmc->head->offset + erase_size;
+	zero_size = fm->offset + fm->size - zero_offset;
+
+	/* Do we have to clear the raw_inode explicitly?  */
+	if (fm->size - zero_size < sizeof(struct jffs_raw_inode)) {
+		cutting_raw_inode = sizeof(struct jffs_raw_inode)
+				    - (fm->size - zero_size);
+	}
+
+	/* First, clear the name and data fields.  */
+	zero_offset_data = zero_offset + cutting_raw_inode;
+	zero_size_data = zero_size - cutting_raw_inode;
+	flash_safe_acquire(fmc->mtd);
+	flash_memset(fmc->mtd, zero_offset_data, 0, zero_size_data);
+	flash_safe_release(fmc->mtd);
+
+	/* Should we clear a part of the raw inode?  */
+	if (cutting_raw_inode) {
+		/* I guess it is ok to clear the raw inode in this order.  */
+		flash_safe_acquire(fmc->mtd);
+		flash_memset(fmc->mtd, zero_offset, 0,
+			     cutting_raw_inode);
+		flash_safe_release(fmc->mtd);
+	}
+
+	return 0;
+} /* jffs_clear_end_of_node()  */
+
+/* Try to erase as much as possible of the dirt in the flash memory.  */
+static long
+jffs_try_to_erase(struct jffs_control *c)
+{
+	struct jffs_fmcontrol *fmc = c->fmc;
+	long erase_size;
+	int err;
+	__u32 offset;
+
+	D3(printk("jffs_try_to_erase()\n"));
+
+	erase_size = jffs_erasable_size(fmc);
+
+	D2(printk("jffs_try_to_erase(): erase_size = %ld\n", erase_size));
+
+	if (erase_size == 0) {
+		return 0;
+	}
+	else if (erase_size < 0) {
+		printk(KERN_ERR "JFFS: jffs_try_to_erase: "
+		       "jffs_erasable_size returned %ld.\n", erase_size);
+		return erase_size;
+	}
+
+	if ((err = jffs_clear_end_of_node(c, erase_size)) < 0) {
+		printk(KERN_ERR "JFFS: jffs_try_to_erase: "
+		       "Clearing of node failed.\n");
+		return err;
+	}
+
+	offset = fmc->head->offset;
+
+	/* Now, let's try to do the erase.  */
+	if ((err = flash_erase_region(fmc->mtd,
+				      offset, erase_size)) < 0) {
+		printk(KERN_ERR "JFFS: Erase of flash failed. "
+		       "offset = %u, erase_size = %ld\n",
+		       offset, erase_size);
+		/* XXX: Here we should allocate this area as dirty
+		   with jffs_fmalloced or something similar.  Now
+		   we just report the error.  */
+		return err;
+	}
+
+#if 0
+	/* Check if the erased sectors really got erased.  */
+	{
+		__u32 pos;
+		__u32 end;
+
+		pos = (__u32)flash_get_direct_pointer(to_kdev_t(c->sb->s_dev), offset);
+		end = pos + erase_size;
+
+		D2(printk("JFFS: Checking erased sector(s)...\n"));
+
+		flash_safe_acquire(fmc->mtd);
+
+		for (; pos < end; pos += 4) {
+			if (*(__u32 *)pos != JFFS_EMPTY_BITMASK) {
+				printk("JFFS: Erase failed! pos = 0x%lx\n",
+				       (long)pos);
+				jffs_hexdump(fmc->mtd, pos,
+					     jffs_min(256, end - pos));
+				err = -1;
+				break;
+			}
+		}
+
+		flash_safe_release(fmc->mtd);
+
+		if (!err) {
+			D2(printk("JFFS: Erase succeeded.\n"));
+		}
+		else {
+			/* XXX: Here we should allocate the memory
+			   with jffs_fmalloced() in order to prevent
+			   JFFS from using this area accidentally.  */
+			return err;
+		}
+	}
+#endif
+
+	/* Update the flash memory data structures.  */
+	jffs_sync_erase(fmc, erase_size);
+
+	return erase_size;
+}
+
+
+/* There are different criteria that should trigger a garbage collect:
+
+   1. There is too much dirt in the memory.
+   2. The free space is becoming small.
+   3. There are many versions of a node.
+
+   The garbage collect should always be done in a manner that guarantees
+   that future garbage collects cannot be locked.  E.g. Rewritten chunks
+   should not be too large (span more than one sector in the flash memory
+   for exemple).  Of course there is a limit on how intelligent this garbage
+   collection can be.  */
+
+
+static int
+jffs_garbage_collect_now(struct jffs_control *c)
+{
+	struct jffs_fmcontrol *fmc = c->fmc;
+	long erased = 0;
+	int result = 0;
+	D1(int i = 1);
+	D2(printk("***jffs_garbage_collect_now(): fmc->dirty_size = %u, fmc->free_size = 0x%x\n, fcs1=0x%x, fcs2=0x%x",
+		  fmc->dirty_size, fmc->free_size, jffs_free_size1(fmc), jffs_free_size2(fmc)));
+	D2(jffs_print_fmcontrol(fmc));
+
+	//	down(&fmc->gclock);
+
+	/* If it is possible to garbage collect, do so.  */
+	
+	while (erased == 0) {
+		D1(printk("***jffs_garbage_collect_now(): round #%u, "
+			  "fmc->dirty_size = %u\n", i++, fmc->dirty_size));
+		D2(jffs_print_fmcontrol(fmc));
+
+		if ((erased = jffs_try_to_erase(c)) < 0) {
+			printk(KERN_WARNING "JFFS: Error in "
+			       "garbage collector.\n");
+			result = erased;
+			goto gc_end;
+		}
+		if (erased)
+			break;
+		
+		if (fmc->free_size == 0) {
+			/* Argh */
+			printk(KERN_ERR "jffs_garbage_collect_now(): free_size == 0. This is BAD.\n");
+			result = -ENOSPC;
+			break;
+		}
+
+		if (fmc->dirty_size < fmc->sector_size) {
+			/* Actually, we _may_ have been able to free some, 
+			 * if there are many overlapping nodes which aren't
+			 * actually marked dirty because they still have
+			 * some valid data in each.
+			 */
+			result = -ENOSPC;
+			break;
+		}
+
+		/* Let's dare to make a garbage collect.  */
+		if ((result = jffs_garbage_collect_next(c)) < 0) {
+			printk(KERN_ERR "JFFS: Something "
+			       "has gone seriously wrong "
+			       "with a garbage collect.\n");
+			goto gc_end;
+		}
+
+		D1(printk("   jffs_garbage_collect_now(): erased: %ld\n", erased));
+		DJM(jffs_print_memory_allocation_statistics());
+	}
+	
+gc_end:
+	//	up(&fmc->gclock);
+
+	D3(printk("   jffs_garbage_collect_now(): Leaving...\n"));
+	D1(if (erased) {
+		printk("jffs_g_c_now(): erased = %ld\n", erased);
+		jffs_print_fmcontrol(fmc);
+	});
+
+	if (!erased && !result)
+		return -ENOSPC;
+
+	return result;
+} /* jffs_garbage_collect_now() */
+
+
+/* Determine if it is reasonable to start garbage collection.
+   We start a gc pass if either:
+   - The number of free bytes < MIN_FREE_BYTES && at least one
+     block is dirty, OR
+   - The number of dirty bytes > MAX_DIRTY_BYTES
+*/
+static inline int thread_should_wake (struct jffs_control *c)
+{
+	D1(printk (KERN_NOTICE "thread_should_wake(): free=%d, dirty=%d, blocksize=%d.\n",
+		   c->fmc->free_size, c->fmc->dirty_size, c->fmc->sector_size));
+
+	/* If there's not enough dirty space to free a block, there's no point. */
+	if (c->fmc->dirty_size < c->fmc->sector_size) {
+		D2(printk(KERN_NOTICE "thread_should_wake(): Not waking. Insufficient dirty space\n"));
+		return 0;
+	}
+#if 1
+	/* If there is too much RAM used by the various structures, GC */
+	if (jffs_get_node_inuse() > (c->fmc->used_size/c->fmc->max_chunk_size * 5 + jffs_get_file_count() * 2 + 50)) {
+		/* FIXME: Provide proof that this test can be satisfied. We
+		   don't want a filesystem doing endless GC just because this
+		   condition cannot ever be false.
+		*/
+		D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to number of nodes\n"));
+		return 1;
+	}
+#endif
+	/* If there are fewer free bytes than the threshold, GC */
+	if (c->fmc->free_size < c->gc_minfree_threshold) {
+		D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to insufficent free space\n"));
+		return 1;
+	}
+	/* If there are more dirty bytes than the threshold, GC */
+	if (c->fmc->dirty_size > c->gc_maxdirty_threshold) {
+		D2(printk(KERN_NOTICE "thread_should_wake(): Waking due to excessive dirty space\n"));
+		return 1;
+	}	
+	/* FIXME: What about the "There are many versions of a node" condition? */
+
+	return 0;
+}
+
+
+void jffs_garbage_collect_trigger(struct jffs_control *c)
+{
+	/* NOTE: We rely on the fact that we have the BKL here.
+	 * Otherwise, the gc_task could go away between the check
+	 * and the wake_up_process()
+	 */
+	if (c->gc_task && thread_should_wake(c))
+		send_sig(SIGHUP, c->gc_task, 1);
+}
+  
+
+/* Kernel threads  take (void *) as arguments.   Thus we pass
+   the jffs_control data as a (void *) and then cast it. */
+int
+jffs_garbage_collect_thread(void *ptr)
+{
+        struct jffs_control *c = (struct jffs_control *) ptr;
+	struct jffs_fmcontrol *fmc = c->fmc;
+	long erased;
+	int result = 0;
+	D1(int i = 1);
+
+	daemonize("jffs_gcd");
+
+	c->gc_task = current;
+
+	lock_kernel();
+	init_completion(&c->gc_thread_comp); /* barrier */ 
+	spin_lock_irq(&current->sighand->siglock);
+	siginitsetinv (&current->blocked, sigmask(SIGHUP) | sigmask(SIGKILL) | sigmask(SIGSTOP) | sigmask(SIGCONT));
+	recalc_sigpending();
+	spin_unlock_irq(&current->sighand->siglock);
+
+	D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): Starting infinite loop.\n"));
+
+	for (;;) {
+
+		/* See if we need to start gc.  If we don't, go to sleep.
+		   
+		   Current implementation is a BAD THING(tm).  If we try 
+		   to unmount the FS, the unmount operation will sleep waiting
+		   for this thread to exit.  We need to arrange to send it a
+		   sig before the umount process sleeps.
+		*/
+
+		if (!thread_should_wake(c))
+			set_current_state (TASK_INTERRUPTIBLE);
+		
+		schedule(); /* Yes, we do this even if we want to go
+				       on immediately - we're a low priority 
+				       background task. */
+
+		/* Put_super will send a SIGKILL and then wait on the sem. 
+		 */
+		while (signal_pending(current)) {
+			siginfo_t info;
+			unsigned long signr = 0;
+
+			spin_lock_irq(&current->sighand->siglock);
+			signr = dequeue_signal(current, &current->blocked, &info);
+			spin_unlock_irq(&current->sighand->siglock);
+
+			switch(signr) {
+			case SIGSTOP:
+				D1(printk("jffs_garbage_collect_thread(): SIGSTOP received.\n"));
+				set_current_state(TASK_STOPPED);
+				schedule();
+				break;
+
+			case SIGKILL:
+				D1(printk("jffs_garbage_collect_thread(): SIGKILL received.\n"));
+				c->gc_task = NULL;
+				complete_and_exit(&c->gc_thread_comp, 0);
+			}
+		}
+
+
+		D1(printk (KERN_NOTICE "jffs_garbage_collect_thread(): collecting.\n"));
+
+		D3(printk (KERN_NOTICE "g_c_thread(): down biglock\n"));
+		down(&fmc->biglock);
+		
+		D1(printk("***jffs_garbage_collect_thread(): round #%u, "
+			  "fmc->dirty_size = %u\n", i++, fmc->dirty_size));
+		D2(jffs_print_fmcontrol(fmc));
+
+		if ((erased = jffs_try_to_erase(c)) < 0) {
+			printk(KERN_WARNING "JFFS: Error in "
+			       "garbage collector: %ld.\n", erased);
+		}
+
+		if (erased)
+			goto gc_end;
+
+		if (fmc->free_size == 0) {
+			/* Argh. Might as well commit suicide. */
+			printk(KERN_ERR "jffs_garbage_collect_thread(): free_size == 0. This is BAD.\n");
+			send_sig(SIGQUIT, c->gc_task, 1);
+			// panic()
+			goto gc_end;
+		}
+		
+		/* Let's dare to make a garbage collect.  */
+		if ((result = jffs_garbage_collect_next(c)) < 0) {
+			printk(KERN_ERR "JFFS: Something "
+			       "has gone seriously wrong "
+			       "with a garbage collect: %d\n", result);
+		}
+		
+	gc_end:
+		D3(printk (KERN_NOTICE "g_c_thread(): up biglock\n"));
+		up(&fmc->biglock);
+	} /* for (;;) */
+} /* jffs_garbage_collect_thread() */
diff --git a/fs/jffs/intrep.h b/fs/jffs/intrep.h
new file mode 100644
index 0000000..4ae97b1
--- /dev/null
+++ b/fs/jffs/intrep.h
@@ -0,0 +1,60 @@
+/*
+ * JFFS -- Journaling Flash File System, Linux implementation.
+ *
+ * Copyright (C) 1999, 2000  Axis Communications AB.
+ *
+ * Created by Finn Hakansson <finn@axis.com>.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * $Id: intrep.h,v 1.14 2001/09/23 23:28:37 dwmw2 Exp $
+ *
+ */
+
+#ifndef __LINUX_JFFS_INTREP_H__
+#define __LINUX_JFFS_INTREP_H__
+#include "jffs_fm.h"
+struct jffs_node *jffs_alloc_node(void);
+void jffs_free_node(struct jffs_node *n);
+int jffs_get_node_inuse(void);
+
+void jffs_cleanup_control(struct jffs_control *c);
+int jffs_build_fs(struct super_block *sb);
+
+int jffs_insert_node(struct jffs_control *c, struct jffs_file *f,
+		     const struct jffs_raw_inode *raw_inode,
+		     const char *name, struct jffs_node *node);
+struct jffs_file *jffs_find_file(struct jffs_control *c, __u32 ino);
+struct jffs_file *jffs_find_child(struct jffs_file *dir, const char *name, int len);
+
+void jffs_free_node(struct jffs_node *node);
+
+int jffs_foreach_file(struct jffs_control *c, int (*func)(struct jffs_file *));
+int jffs_possibly_delete_file(struct jffs_file *f);
+int jffs_insert_file_into_tree(struct jffs_file *f);
+int jffs_unlink_file_from_tree(struct jffs_file *f);
+int jffs_file_count(struct jffs_file *f);
+
+int jffs_write_node(struct jffs_control *c, struct jffs_node *node,
+		    struct jffs_raw_inode *raw_inode,
+		    const char *name, const unsigned char *buf,
+		    int recoverable, struct jffs_file *f);
+int jffs_read_data(struct jffs_file *f, unsigned char *buf, __u32 read_offset, __u32 size);
+
+/* Garbage collection stuff.  */
+int jffs_garbage_collect_thread(void *c);
+void jffs_garbage_collect_trigger(struct jffs_control *c);
+
+/* For debugging purposes.  */
+void jffs_print_node(struct jffs_node *n);
+void jffs_print_raw_inode(struct jffs_raw_inode *raw_inode);
+#if 0
+int jffs_print_file(struct jffs_file *f);
+#endif  /*  0  */
+void jffs_print_hash_table(struct jffs_control *c);
+void jffs_print_tree(struct jffs_file *first_file, int indent);
+
+#endif /* __LINUX_JFFS_INTREP_H__  */
diff --git a/fs/jffs/jffs_fm.c b/fs/jffs/jffs_fm.c
new file mode 100644
index 0000000..0cab8da
--- /dev/null
+++ b/fs/jffs/jffs_fm.c
@@ -0,0 +1,795 @@
+/*
+ * JFFS -- Journaling Flash File System, Linux implementation.
+ *
+ * Copyright (C) 1999, 2000  Axis Communications AB.
+ *
+ * Created by Finn Hakansson <finn@axis.com>.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * $Id: jffs_fm.c,v 1.27 2001/09/20 12:29:47 dwmw2 Exp $
+ *
+ * Ported to Linux 2.3.x and MTD:
+ * Copyright (C) 2000  Alexander Larsson (alex@cendio.se), Cendio Systems AB
+ *
+ */
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/jffs.h>
+#include "jffs_fm.h"
+
+#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
+static int jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset);
+#endif
+
+static struct jffs_fm *jffs_alloc_fm(void);
+static void jffs_free_fm(struct jffs_fm *n);
+
+extern kmem_cache_t     *fm_cache;
+extern kmem_cache_t     *node_cache;
+
+/* This function creates a new shiny flash memory control structure.  */
+struct jffs_fmcontrol *
+jffs_build_begin(struct jffs_control *c, int unit)
+{
+	struct jffs_fmcontrol *fmc;
+	struct mtd_info *mtd;
+	
+	D3(printk("jffs_build_begin()\n"));
+	fmc = (struct jffs_fmcontrol *)kmalloc(sizeof(struct jffs_fmcontrol),
+					       GFP_KERNEL);
+	if (!fmc) {
+		D(printk("jffs_build_begin(): Allocation of "
+			 "struct jffs_fmcontrol failed!\n"));
+		return (struct jffs_fmcontrol *)0;
+	}
+	DJM(no_jffs_fmcontrol++);
+
+	mtd = get_mtd_device(NULL, unit);
+
+	if (!mtd) {
+		kfree(fmc);
+		DJM(no_jffs_fmcontrol--);
+		return NULL;
+	}
+	
+	/* Retrieve the size of the flash memory.  */
+	fmc->flash_size = mtd->size;
+	D3(printk("  fmc->flash_size = %d bytes\n", fmc->flash_size));
+
+	fmc->used_size = 0;
+	fmc->dirty_size = 0;
+	fmc->free_size = mtd->size;
+	fmc->sector_size = mtd->erasesize;
+	fmc->max_chunk_size = fmc->sector_size >> 1;
+	/* min_free_size:
+	   1 sector, obviously.
+	   + 1 x max_chunk_size, for when a nodes overlaps the end of a sector
+	   + 1 x max_chunk_size again, which ought to be enough to handle 
+		   the case where a rename causes a name to grow, and GC has
+		   to write out larger nodes than the ones it's obsoleting.
+		   We should fix it so it doesn't have to write the name
+		   _every_ time. Later.
+	   + another 2 sectors because people keep getting GC stuck and
+	           we don't know why. This scares me - I want formal proof
+		   of correctness of whatever number we put here. dwmw2.
+	*/
+	fmc->min_free_size = fmc->sector_size << 2;
+	fmc->mtd = mtd;
+	fmc->c = c;
+	fmc->head = NULL;
+	fmc->tail = NULL;
+	fmc->head_extra = NULL;
+	fmc->tail_extra = NULL;
+	init_MUTEX(&fmc->biglock);
+	return fmc;
+}
+
+
+/* When the flash memory scan has completed, this function should be called
+   before use of the control structure.  */
+void
+jffs_build_end(struct jffs_fmcontrol *fmc)
+{
+	D3(printk("jffs_build_end()\n"));
+
+	if (!fmc->head) {
+		fmc->head = fmc->head_extra;
+		fmc->tail = fmc->tail_extra;
+	}
+	else if (fmc->head_extra) {
+		fmc->tail_extra->next = fmc->head;
+		fmc->head->prev = fmc->tail_extra;
+		fmc->head = fmc->head_extra;
+	}
+	fmc->head_extra = NULL; /* These two instructions should be omitted.  */
+	fmc->tail_extra = NULL;
+	D3(jffs_print_fmcontrol(fmc));
+}
+
+
+/* Call this function when the file system is unmounted.  This function
+   frees all memory used by this module.  */
+void
+jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc)
+{
+	if (fmc) {
+		struct jffs_fm *next = fmc->head;
+		while (next) {
+			struct jffs_fm *cur = next;
+			next = next->next;
+			jffs_free_fm(cur);
+		}
+		put_mtd_device(fmc->mtd);
+		kfree(fmc);
+		DJM(no_jffs_fmcontrol--);
+	}
+}
+
+
+/* This function returns the size of the first chunk of free space on the
+   flash memory.  This function will return something nonzero if the flash
+   memory contains any free space.  */
+__u32
+jffs_free_size1(struct jffs_fmcontrol *fmc)
+{
+	__u32 head;
+	__u32 tail;
+	__u32 end = fmc->flash_size;
+
+	if (!fmc->head) {
+		/* There is nothing on the flash.  */
+		return fmc->flash_size;
+	}
+
+	/* Compute the beginning and ending of the contents of the flash.  */
+	head = fmc->head->offset;
+	tail = fmc->tail->offset + fmc->tail->size;
+	if (tail == end) {
+		tail = 0;
+	}
+	ASSERT(else if (tail > end) {
+		printk(KERN_WARNING "jffs_free_size1(): tail > end\n");
+		tail = 0;
+	});
+
+	if (head <= tail) {
+		return end - tail;
+	}
+	else {
+		return head - tail;
+	}
+}
+
+/* This function will return something nonzero in case there are two free
+   areas on the flash.  Like this:
+
+     +----------------+------------------+----------------+
+     |     FREE 1     |   USED / DIRTY   |     FREE 2     |
+     +----------------+------------------+----------------+
+       fmc->head -----^
+       fmc->tail ------------------------^
+
+   The value returned, will be the size of the first empty area on the
+   flash, in this case marked "FREE 1".  */
+__u32
+jffs_free_size2(struct jffs_fmcontrol *fmc)
+{
+	if (fmc->head) {
+		__u32 head = fmc->head->offset;
+		__u32 tail = fmc->tail->offset + fmc->tail->size;
+		if (tail == fmc->flash_size) {
+			tail = 0;
+		}
+
+		if (tail >= head) {
+			return head;
+		}
+	}
+	return 0;
+}
+
+
+/* Allocate a chunk of flash memory.  If there is enough space on the
+   device, a reference to the associated node is stored in the jffs_fm
+   struct.  */
+int
+jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size, struct jffs_node *node,
+	     struct jffs_fm **result)
+{
+	struct jffs_fm *fm;
+	__u32 free_chunk_size1;
+	__u32 free_chunk_size2;
+
+	D2(printk("jffs_fmalloc(): fmc = 0x%p, size = %d, "
+		  "node = 0x%p\n", fmc, size, node));
+
+	*result = NULL;
+
+	if (!(fm = jffs_alloc_fm())) {
+		D(printk("jffs_fmalloc(): kmalloc() failed! (fm)\n"));
+		return -ENOMEM;
+	}
+
+	free_chunk_size1 = jffs_free_size1(fmc);
+	free_chunk_size2 = jffs_free_size2(fmc);
+	if (free_chunk_size1 + free_chunk_size2 != fmc->free_size) {
+		printk(KERN_WARNING "Free size accounting screwed\n");
+		printk(KERN_WARNING "free_chunk_size1 == 0x%x, free_chunk_size2 == 0x%x, fmc->free_size == 0x%x\n", free_chunk_size1, free_chunk_size2, fmc->free_size);
+	}
+
+	D3(printk("jffs_fmalloc(): free_chunk_size1 = %u, "
+		  "free_chunk_size2 = %u\n",
+		  free_chunk_size1, free_chunk_size2));
+
+	if (size <= free_chunk_size1) {
+		if (!(fm->nodes = (struct jffs_node_ref *)
+				  kmalloc(sizeof(struct jffs_node_ref),
+					  GFP_KERNEL))) {
+			D(printk("jffs_fmalloc(): kmalloc() failed! "
+				 "(node_ref)\n"));
+			jffs_free_fm(fm);
+			return -ENOMEM;
+		}
+		DJM(no_jffs_node_ref++);
+		fm->nodes->node = node;
+		fm->nodes->next = NULL;
+		if (fmc->tail) {
+			fm->offset = fmc->tail->offset + fmc->tail->size;
+			if (fm->offset == fmc->flash_size) {
+				fm->offset = 0;
+			}
+			ASSERT(else if (fm->offset > fmc->flash_size) {
+				printk(KERN_WARNING "jffs_fmalloc(): "
+				       "offset > flash_end\n");
+				fm->offset = 0;
+			});
+		}
+		else {
+			/* There don't have to be files in the file
+			   system yet.  */
+			fm->offset = 0;
+		}
+		fm->size = size;
+		fmc->free_size -= size;
+		fmc->used_size += size;
+	}
+	else if (size > free_chunk_size2) {
+		printk(KERN_WARNING "JFFS: Tried to allocate a too "
+		       "large flash memory chunk. (size = %u)\n", size);
+		jffs_free_fm(fm);
+		return -ENOSPC;
+	}
+	else {
+		fm->offset = fmc->tail->offset + fmc->tail->size;
+		fm->size = free_chunk_size1;
+		fm->nodes = NULL;
+		fmc->free_size -= fm->size;
+		fmc->dirty_size += fm->size; /* Changed by simonk. This seemingly fixes a 
+						bug that caused infinite garbage collection.
+						It previously set fmc->dirty_size to size (which is the
+						size of the requested chunk).
+					     */
+	}
+
+	fm->next = NULL;
+	if (!fmc->head) {
+		fm->prev = NULL;
+		fmc->head = fm;
+		fmc->tail = fm;
+	}
+	else {
+		fm->prev = fmc->tail;
+		fmc->tail->next = fm;
+		fmc->tail = fm;
+	}
+
+	D3(jffs_print_fmcontrol(fmc));
+	D3(jffs_print_fm(fm));
+	*result = fm;
+	return 0;
+}
+
+
+/* The on-flash space is not needed anymore by the passed node.  Remove
+   the reference to the node from the node list.  If the data chunk in
+   the flash memory isn't used by any more nodes anymore (fm->nodes == 0),
+   then mark that chunk as dirty.  */
+int
+jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, struct jffs_node *node)
+{
+	struct jffs_node_ref *ref;
+	struct jffs_node_ref *prev;
+	ASSERT(int del = 0);
+
+	D2(printk("jffs_fmfree(): node->ino = %u, node->version = %u\n",
+		 node->ino, node->version));
+
+	ASSERT(if (!fmc || !fm || !fm->nodes) {
+		printk(KERN_ERR "jffs_fmfree(): fmc: 0x%p, fm: 0x%p, "
+		       "fm->nodes: 0x%p\n",
+		       fmc, fm, (fm ? fm->nodes : NULL));
+		return -1;
+	});
+
+	/* Find the reference to the node that is going to be removed
+	   and remove it.  */
+	for (ref = fm->nodes, prev = NULL; ref; ref = ref->next) {
+		if (ref->node == node) {
+			if (prev) {
+				prev->next = ref->next;
+			}
+			else {
+				fm->nodes = ref->next;
+			}
+			kfree(ref);
+			DJM(no_jffs_node_ref--);
+			ASSERT(del = 1);
+			break;
+		}
+		prev = ref;
+	}
+
+	/* If the data chunk in the flash memory isn't used anymore
+	   just mark it as obsolete.  */
+	if (!fm->nodes) {
+		/* No node uses this chunk so let's remove it.  */
+		fmc->used_size -= fm->size;
+		fmc->dirty_size += fm->size;
+#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
+		if (jffs_mark_obsolete(fmc, fm->offset) < 0) {
+			D1(printk("jffs_fmfree(): Failed to mark an on-flash "
+				  "node obsolete!\n"));
+			return -1;
+		}
+#endif
+	}
+
+	ASSERT(if (!del) {
+		printk(KERN_WARNING "***jffs_fmfree(): "
+		       "Didn't delete any node reference!\n");
+	});
+
+	return 0;
+}
+
+
+/* This allocation function is used during the initialization of
+   the file system.  */
+struct jffs_fm *
+jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset, __u32 size,
+	       struct jffs_node *node)
+{
+	struct jffs_fm *fm;
+
+	D3(printk("jffs_fmalloced()\n"));
+
+	if (!(fm = jffs_alloc_fm())) {
+		D(printk("jffs_fmalloced(0x%p, %u, %u, 0x%p): failed!\n",
+			 fmc, offset, size, node));
+		return NULL;
+	}
+	fm->offset = offset;
+	fm->size = size;
+	fm->prev = NULL;
+	fm->next = NULL;
+	fm->nodes = NULL;
+	if (node) {
+		/* `node' exists and it should be associated with the
+		    jffs_fm structure `fm'.  */
+		if (!(fm->nodes = (struct jffs_node_ref *)
+				  kmalloc(sizeof(struct jffs_node_ref),
+					  GFP_KERNEL))) {
+			D(printk("jffs_fmalloced(): !fm->nodes\n"));
+			jffs_free_fm(fm);
+			return NULL;
+		}
+		DJM(no_jffs_node_ref++);
+		fm->nodes->node = node;
+		fm->nodes->next = NULL;
+		fmc->used_size += size;
+		fmc->free_size -= size;
+	}
+	else {
+		/* If there is no node, then this is just a chunk of dirt.  */
+		fmc->dirty_size += size;
+		fmc->free_size -= size;
+	}
+
+	if (fmc->head_extra) {
+		fm->prev = fmc->tail_extra;
+		fmc->tail_extra->next = fm;
+		fmc->tail_extra = fm;
+	}
+	else if (!fmc->head) {
+		fmc->head = fm;
+		fmc->tail = fm;
+	}
+	else if (fmc->tail->offset + fmc->tail->size < offset) {
+		fmc->head_extra = fm;
+		fmc->tail_extra = fm;
+	}
+	else {
+		fm->prev = fmc->tail;
+		fmc->tail->next = fm;
+		fmc->tail = fm;
+	}
+	D3(jffs_print_fmcontrol(fmc));
+	D3(jffs_print_fm(fm));
+	return fm;
+}
+
+
+/* Add a new node to an already existing jffs_fm struct.  */
+int
+jffs_add_node(struct jffs_node *node)
+{
+	struct jffs_node_ref *ref;
+
+	D3(printk("jffs_add_node(): ino = %u\n", node->ino));
+
+	ref = (struct jffs_node_ref *)kmalloc(sizeof(struct jffs_node_ref),
+					      GFP_KERNEL);
+	if (!ref)
+		return -ENOMEM;
+
+	DJM(no_jffs_node_ref++);
+	ref->node = node;
+	ref->next = node->fm->nodes;
+	node->fm->nodes = ref;
+	return 0;
+}
+
+
+/* Free a part of some allocated space.  */
+void
+jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm, __u32 size)
+{
+	D1(printk("***jffs_fmfree_partly(): fm = 0x%p, fm->nodes = 0x%p, "
+		  "fm->nodes->node->ino = %u, size = %u\n",
+		  fm, (fm ? fm->nodes : 0),
+		  (!fm ? 0 : (!fm->nodes ? 0 : fm->nodes->node->ino)), size));
+
+	if (fm->nodes) {
+		kfree(fm->nodes);
+		DJM(no_jffs_node_ref--);
+		fm->nodes = NULL;
+	}
+	fmc->used_size -= fm->size;
+	if (fm == fmc->tail) {
+		fm->size -= size;
+		fmc->free_size += size;
+	}
+	fmc->dirty_size += fm->size;
+}
+
+
+/* Find the jffs_fm struct that contains the end of the data chunk that
+   begins at the logical beginning of the flash memory and spans `size'
+   bytes.  If we want to erase a sector of the flash memory, we use this
+   function to find where the sector limit cuts a chunk of data.  */
+struct jffs_fm *
+jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size)
+{
+	struct jffs_fm *fm;
+	__u32 pos = 0;
+
+	if (size == 0) {
+		return NULL;
+	}
+
+	ASSERT(if (!fmc) {
+		printk(KERN_ERR "jffs_cut_node(): fmc == NULL\n");
+		return NULL;
+	});
+
+	fm = fmc->head;
+
+	while (fm) {
+		pos += fm->size;
+		if (pos < size) {
+			fm = fm->next;
+		}
+		else if (pos > size) {
+			break;
+		}
+		else {
+			fm = NULL;
+			break;
+		}
+	}
+
+	return fm;
+}
+
+
+/* Move the head of the fmc structures and delete the obsolete parts.  */
+void
+jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size)
+{
+	struct jffs_fm *fm;
+	struct jffs_fm *del;
+
+	ASSERT(if (!fmc) {
+		printk(KERN_ERR "jffs_sync_erase(): fmc == NULL\n");
+		return;
+	});
+
+	fmc->dirty_size -= erased_size;
+	fmc->free_size += erased_size;
+
+	for (fm = fmc->head; fm && (erased_size > 0);) {
+		if (erased_size >= fm->size) {
+			erased_size -= fm->size;
+			del = fm;
+			fm = fm->next;
+			fm->prev = NULL;
+			fmc->head = fm;
+			jffs_free_fm(del);
+		}
+		else {
+			fm->size -= erased_size;
+			fm->offset += erased_size;
+			break;
+		}
+	}
+}
+
+
+/* Return the oldest used node in the flash memory.  */
+struct jffs_node *
+jffs_get_oldest_node(struct jffs_fmcontrol *fmc)
+{
+	struct jffs_fm *fm;
+	struct jffs_node_ref *nref;
+	struct jffs_node *node = NULL;
+
+	ASSERT(if (!fmc) {
+		printk(KERN_ERR "jffs_get_oldest_node(): fmc == NULL\n");
+		return NULL;
+	});
+
+	for (fm = fmc->head; fm && !fm->nodes; fm = fm->next);
+
+	if (!fm) {
+		return NULL;
+	}
+
+	/* The oldest node is the last one in the reference list.  This list
+	   shouldn't be too long; just one or perhaps two elements.  */
+	for (nref = fm->nodes; nref; nref = nref->next) {
+		node = nref->node;
+	}
+
+	D2(printk("jffs_get_oldest_node(): ino = %u, version = %u\n",
+		  (node ? node->ino : 0), (node ? node->version : 0)));
+
+	return node;
+}
+
+
+#if defined(JFFS_MARK_OBSOLETE) && JFFS_MARK_OBSOLETE
+
+/* Mark an on-flash node as obsolete.
+
+   Note that this is just an optimization that isn't necessary for the
+   filesystem to work.  */
+
+static int
+jffs_mark_obsolete(struct jffs_fmcontrol *fmc, __u32 fm_offset)
+{
+	/* The `accurate_pos' holds the position of the accurate byte
+	   in the jffs_raw_inode structure that we are going to mark
+	   as obsolete.  */
+	__u32 accurate_pos = fm_offset + JFFS_RAW_INODE_ACCURATE_OFFSET;
+	unsigned char zero = 0x00;
+	size_t len;
+
+	D3(printk("jffs_mark_obsolete(): accurate_pos = %u\n", accurate_pos));
+	ASSERT(if (!fmc) {
+		printk(KERN_ERR "jffs_mark_obsolete(): fmc == NULL\n");
+		return -1;
+	});
+
+	/* Write 0x00 to the raw inode's accurate member.  Don't care
+	   about the return value.  */
+	MTD_WRITE(fmc->mtd, accurate_pos, 1, &len, &zero);
+	return 0;
+}
+
+#endif /* JFFS_MARK_OBSOLETE  */
+
+/* check if it's possible to erase the wanted range, and if not, return
+ * the range that IS erasable, or a negative error code.
+ */
+static long
+jffs_flash_erasable_size(struct mtd_info *mtd, __u32 offset, __u32 size)
+{
+         u_long ssize;
+
+	/* assume that sector size for a partition is constant even
+	 * if it spans more than one chip (you usually put the same
+	 * type of chips in a system)
+	 */
+
+        ssize = mtd->erasesize;
+
+	if (offset % ssize) {
+		printk(KERN_WARNING "jffs_flash_erasable_size() given non-aligned offset %x (erasesize %lx)\n", offset, ssize);
+		/* The offset is not sector size aligned.  */
+		return -1;
+	}
+	else if (offset > mtd->size) {
+		printk(KERN_WARNING "jffs_flash_erasable_size given offset off the end of device (%x > %x)\n", offset, mtd->size);
+		return -2;
+	}
+	else if (offset + size > mtd->size) {
+		printk(KERN_WARNING "jffs_flash_erasable_size() given length which runs off the end of device (ofs %x + len %x = %x, > %x)\n", offset,size, offset+size, mtd->size);
+		return -3;
+	}
+
+	return (size / ssize) * ssize;
+}
+
+
+/* How much dirty flash memory is possible to erase at the moment?  */
+long
+jffs_erasable_size(struct jffs_fmcontrol *fmc)
+{
+	struct jffs_fm *fm;
+	__u32 size = 0;
+	long ret;
+
+	ASSERT(if (!fmc) {
+		printk(KERN_ERR "jffs_erasable_size(): fmc = NULL\n");
+		return -1;
+	});
+
+	if (!fmc->head) {
+		/* The flash memory is totally empty. No nodes. No dirt.
+		   Just return.  */
+		return 0;
+	}
+
+	/* Calculate how much space that is dirty.  */
+	for (fm = fmc->head; fm && !fm->nodes; fm = fm->next) {
+		if (size && fm->offset == 0) {
+			/* We have reached the beginning of the flash.  */
+			break;
+		}
+		size += fm->size;
+	}
+
+	/* Someone's signature contained this:
+	   There's a fine line between fishing and just standing on
+	   the shore like an idiot...  */
+	ret = jffs_flash_erasable_size(fmc->mtd, fmc->head->offset, size);
+
+	ASSERT(if (ret < 0) {
+		printk("jffs_erasable_size: flash_erasable_size() "
+		       "returned something less than zero (%ld).\n", ret);
+		printk("jffs_erasable_size: offset = 0x%08x\n",
+		       fmc->head->offset);
+	});
+
+	/* If there is dirt on the flash (which is the reason to why
+	   this function was called in the first place) but no space is
+	   possible to erase right now, the initial part of the list of
+	   jffs_fm structs, that hold place for dirty space, could perhaps
+	   be shortened.  The list's initial "dirty" elements are merged
+	   into just one large dirty jffs_fm struct.  This operation must
+	   only be performed if nothing is possible to erase.  Otherwise,
+	   jffs_clear_end_of_node() won't work as expected.  */
+	if (ret == 0) {
+		struct jffs_fm *head = fmc->head;
+		struct jffs_fm *del;
+		/* While there are two dirty nodes beside each other.*/
+		while (head->nodes == 0
+		       && head->next
+		       && head->next->nodes == 0) {
+			del = head->next;
+			head->size += del->size;
+			head->next = del->next;
+			if (del->next) {
+				del->next->prev = head;
+			}
+			jffs_free_fm(del);
+		}
+	}
+
+	return (ret >= 0 ? ret : 0);
+}
+
+static struct jffs_fm *jffs_alloc_fm(void)
+{
+	struct jffs_fm *fm;
+
+	fm = kmem_cache_alloc(fm_cache,GFP_KERNEL);
+	DJM(if (fm) no_jffs_fm++;);
+	
+	return fm;
+}
+
+static void jffs_free_fm(struct jffs_fm *n)
+{
+	kmem_cache_free(fm_cache,n);
+	DJM(no_jffs_fm--);
+}
+
+
+
+struct jffs_node *jffs_alloc_node(void)
+{
+	struct jffs_node *n;
+
+	n = (struct jffs_node *)kmem_cache_alloc(node_cache,GFP_KERNEL);
+	if(n != NULL)
+		no_jffs_node++;
+	return n;
+}
+
+void jffs_free_node(struct jffs_node *n)
+{
+	kmem_cache_free(node_cache,n);
+	no_jffs_node--;
+}
+
+
+int jffs_get_node_inuse(void)
+{
+	return no_jffs_node;
+}
+
+void
+jffs_print_fmcontrol(struct jffs_fmcontrol *fmc)
+{
+	D(printk("struct jffs_fmcontrol: 0x%p\n", fmc));
+	D(printk("{\n"));
+	D(printk("        %u, /* flash_size  */\n", fmc->flash_size));
+	D(printk("        %u, /* used_size  */\n", fmc->used_size));
+	D(printk("        %u, /* dirty_size  */\n", fmc->dirty_size));
+	D(printk("        %u, /* free_size  */\n", fmc->free_size));
+	D(printk("        %u, /* sector_size  */\n", fmc->sector_size));
+	D(printk("        %u, /* min_free_size  */\n", fmc->min_free_size));
+	D(printk("        %u, /* max_chunk_size  */\n", fmc->max_chunk_size));
+	D(printk("        0x%p, /* mtd  */\n", fmc->mtd));
+	D(printk("        0x%p, /* head  */    "
+		 "(head->offset = 0x%08x)\n",
+		 fmc->head, (fmc->head ? fmc->head->offset : 0)));
+	D(printk("        0x%p, /* tail  */    "
+		 "(tail->offset + tail->size = 0x%08x)\n",
+		 fmc->tail,
+		 (fmc->tail ? fmc->tail->offset + fmc->tail->size : 0)));
+	D(printk("        0x%p, /* head_extra  */\n", fmc->head_extra));
+	D(printk("        0x%p, /* tail_extra  */\n", fmc->tail_extra));
+	D(printk("}\n"));
+}
+
+void
+jffs_print_fm(struct jffs_fm *fm)
+{
+	D(printk("struct jffs_fm: 0x%p\n", fm));
+	D(printk("{\n"));
+	D(printk("       0x%08x, /* offset  */\n", fm->offset));
+	D(printk("       %u, /* size  */\n", fm->size));
+	D(printk("       0x%p, /* prev  */\n", fm->prev));
+	D(printk("       0x%p, /* next  */\n", fm->next));
+	D(printk("       0x%p, /* nodes  */\n", fm->nodes));
+	D(printk("}\n"));
+}
+
+#if 0
+void
+jffs_print_node_ref(struct jffs_node_ref *ref)
+{
+	D(printk("struct jffs_node_ref: 0x%p\n", ref));
+	D(printk("{\n"));
+	D(printk("       0x%p, /* node  */\n", ref->node));
+	D(printk("       0x%p, /* next  */\n", ref->next));
+	D(printk("}\n"));
+}
+#endif  /*  0  */
+
diff --git a/fs/jffs/jffs_fm.h b/fs/jffs/jffs_fm.h
new file mode 100644
index 0000000..bc291c4
--- /dev/null
+++ b/fs/jffs/jffs_fm.h
@@ -0,0 +1,148 @@
+/*
+ * JFFS -- Journaling Flash File System, Linux implementation.
+ *
+ * Copyright (C) 1999, 2000  Axis Communications AB.
+ *
+ * Created by Finn Hakansson <finn@axis.com>.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * $Id: jffs_fm.h,v 1.13 2001/01/11 12:03:25 dwmw2 Exp $
+ *
+ * Ported to Linux 2.3.x and MTD:
+ * Copyright (C) 2000  Alexander Larsson (alex@cendio.se), Cendio Systems AB
+ *
+ */
+
+#ifndef __LINUX_JFFS_FM_H__
+#define __LINUX_JFFS_FM_H__
+
+#include <linux/types.h>
+#include <linux/jffs.h>
+#include <linux/mtd/mtd.h>
+#include <linux/config.h>
+
+/* The alignment between two nodes in the flash memory.  */
+#define JFFS_ALIGN_SIZE 4
+
+/* Mark the on-flash space as obsolete when appropriate.  */
+#define JFFS_MARK_OBSOLETE 0
+
+#ifndef CONFIG_JFFS_FS_VERBOSE
+#define CONFIG_JFFS_FS_VERBOSE 1
+#endif
+
+#if CONFIG_JFFS_FS_VERBOSE > 0
+#define D(x) x
+#define D1(x) D(x)
+#else
+#define D(x)
+#define D1(x)
+#endif
+
+#if CONFIG_JFFS_FS_VERBOSE > 1
+#define D2(x) D(x)
+#else
+#define D2(x)
+#endif
+
+#if CONFIG_JFFS_FS_VERBOSE > 2
+#define D3(x) D(x)
+#else
+#define D3(x)
+#endif
+
+#define ASSERT(x) x
+
+/* How many padding bytes should be inserted between two chunks of data
+   on the flash?  */
+#define JFFS_GET_PAD_BYTES(size) ( (JFFS_ALIGN_SIZE-1) & -(__u32)(size) )
+#define JFFS_PAD(size) ( (size + (JFFS_ALIGN_SIZE-1)) & ~(JFFS_ALIGN_SIZE-1) )
+
+
+
+struct jffs_node_ref
+{
+	struct jffs_node *node;
+	struct jffs_node_ref *next;
+};
+
+
+/* The struct jffs_fm represents a chunk of data in the flash memory.  */
+struct jffs_fm
+{
+	__u32 offset;
+	__u32 size;
+	struct jffs_fm *prev;
+	struct jffs_fm *next;
+	struct jffs_node_ref *nodes; /* USED if != 0.  */
+};
+
+struct jffs_fmcontrol
+{
+	__u32 flash_size;
+	__u32 used_size;
+	__u32 dirty_size;
+	__u32 free_size;
+	__u32 sector_size;
+	__u32 min_free_size;  /* The minimum free space needed to be able
+				 to perform garbage collections.  */
+	__u32 max_chunk_size; /* The maximum size of a chunk of data.  */
+	struct mtd_info *mtd;
+	struct jffs_control *c;
+	struct jffs_fm *head;
+	struct jffs_fm *tail;
+	struct jffs_fm *head_extra;
+	struct jffs_fm *tail_extra;
+	struct semaphore biglock;
+};
+
+/* Notice the two members head_extra and tail_extra in the jffs_control
+   structure above. Those are only used during the scanning of the flash
+   memory; while the file system is being built. If the data in the flash
+   memory is organized like
+
+      +----------------+------------------+----------------+
+      |  USED / DIRTY  |       FREE       |  USED / DIRTY  |
+      +----------------+------------------+----------------+
+
+   then the scan is split in two parts. The first scanned part of the
+   flash memory is organized through the members head and tail. The
+   second scanned part is organized with head_extra and tail_extra. When
+   the scan is completed, the two lists are merged together. The jffs_fm
+   struct that head_extra references is the logical beginning of the
+   flash memory so it will be referenced by the head member.  */
+
+
+
+struct jffs_fmcontrol *jffs_build_begin(struct jffs_control *c, int unit);
+void jffs_build_end(struct jffs_fmcontrol *fmc);
+void jffs_cleanup_fmcontrol(struct jffs_fmcontrol *fmc);
+
+int jffs_fmalloc(struct jffs_fmcontrol *fmc, __u32 size,
+		 struct jffs_node *node, struct jffs_fm **result);
+int jffs_fmfree(struct jffs_fmcontrol *fmc, struct jffs_fm *fm,
+		struct jffs_node *node);
+
+__u32 jffs_free_size1(struct jffs_fmcontrol *fmc);
+__u32 jffs_free_size2(struct jffs_fmcontrol *fmc);
+void jffs_sync_erase(struct jffs_fmcontrol *fmc, int erased_size);
+struct jffs_fm *jffs_cut_node(struct jffs_fmcontrol *fmc, __u32 size);
+struct jffs_node *jffs_get_oldest_node(struct jffs_fmcontrol *fmc);
+long jffs_erasable_size(struct jffs_fmcontrol *fmc);
+struct jffs_fm *jffs_fmalloced(struct jffs_fmcontrol *fmc, __u32 offset,
+			       __u32 size, struct jffs_node *node);
+int jffs_add_node(struct jffs_node *node);
+void jffs_fmfree_partly(struct jffs_fmcontrol *fmc, struct jffs_fm *fm,
+			__u32 size);
+
+void jffs_print_fmcontrol(struct jffs_fmcontrol *fmc);
+void jffs_print_fm(struct jffs_fm *fm);
+#if 0
+void jffs_print_node_ref(struct jffs_node_ref *ref);
+#endif  /*  0  */
+
+#endif /* __LINUX_JFFS_FM_H__  */
diff --git a/fs/jffs/jffs_proc.c b/fs/jffs/jffs_proc.c
new file mode 100644
index 0000000..9bdd99a
--- /dev/null
+++ b/fs/jffs/jffs_proc.c
@@ -0,0 +1,261 @@
+/*
+ * JFFS -- Journaling Flash File System, Linux implementation.
+ *
+ * Copyright (C) 2000  Axis Communications AB.
+ *
+ * Created by Simon Kagstrom <simonk@axis.com>.
+ *
+ * $Id: jffs_proc.c,v 1.5 2001/06/02 14:34:55 dwmw2 Exp $
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ *  Overview:
+ *   This file defines JFFS partition entries in the proc file system.
+ *
+ *  TODO:
+ *   Create some more proc files for different kinds of info, i.e. statistics
+ *   about written and read bytes, number of calls to different routines,
+ *   reports about failures.
+ */
+
+#include <linux/errno.h>
+#include <linux/fs.h>
+#include <linux/jffs.h>
+#include <linux/slab.h>
+#include <linux/proc_fs.h>
+#include <linux/time.h>
+#include <linux/types.h>
+#include "jffs_fm.h"
+#include "jffs_proc.h"
+
+/*
+ * Structure for a JFFS partition in the system
+ */
+struct jffs_partition_dir {
+	struct jffs_control *c;
+	struct proc_dir_entry *part_root;
+	struct proc_dir_entry *part_info;
+	struct proc_dir_entry *part_layout;
+	struct jffs_partition_dir *next;
+};
+
+/*
+ * Structure for top-level entry in '/proc/fs' directory
+ */
+struct proc_dir_entry *jffs_proc_root;
+
+/*
+ * Linked list of 'jffs_partition_dirs' to help us track
+ * the mounted JFFS partitions in the system
+ */
+static struct jffs_partition_dir *jffs_part_dirs;
+
+/*
+ * Read functions for entries
+ */
+static int jffs_proc_info_read(char *page, char **start, off_t off,
+		int count, int *eof, void *data);
+static int jffs_proc_layout_read (char *page, char **start, off_t off,
+		int count, int *eof, void *data);
+
+
+/*
+ * Register a JFFS partition directory (called upon mount)
+ */
+int jffs_register_jffs_proc_dir(int mtd, struct jffs_control *c)
+{
+	struct jffs_partition_dir *part_dir;
+	struct proc_dir_entry *part_info = NULL;
+	struct proc_dir_entry *part_layout = NULL;
+	struct proc_dir_entry *part_root = NULL;
+	char name[10];
+
+	sprintf(name, "%d", mtd);
+	/* Allocate structure for local JFFS partition table */
+	part_dir = (struct jffs_partition_dir *)
+		kmalloc(sizeof (struct jffs_partition_dir), GFP_KERNEL);
+	if (!part_dir)
+		goto out;
+
+	/* Create entry for this partition */
+	part_root = proc_mkdir(name, jffs_proc_root);
+	if (!part_root)
+		goto out1;
+
+	/* Create entry for 'info' file */
+	part_info = create_proc_entry ("info", 0, part_root);
+	if (!part_info)
+		goto out2;
+	part_info->read_proc = jffs_proc_info_read;
+	part_info->data = (void *) c;
+
+	/* Create entry for 'layout' file */
+	part_layout = create_proc_entry ("layout", 0, part_root);
+	if (!part_layout)
+		goto out3;
+	part_layout->read_proc = jffs_proc_layout_read;
+	part_layout->data = (void *) c;
+
+	/* Fill in structure for table and insert in the list */
+	part_dir->c = c;
+	part_dir->part_root = part_root;
+	part_dir->part_info = part_info;
+	part_dir->part_layout = part_layout;
+	part_dir->next = jffs_part_dirs;
+	jffs_part_dirs = part_dir;
+
+	/* Return happy */
+	return 0;
+
+out3:
+	remove_proc_entry("info", part_root);
+out2:
+	remove_proc_entry(name, jffs_proc_root);
+out1:
+	kfree(part_dir);
+out:
+	return -ENOMEM;
+}
+
+
+/*
+ * Unregister a JFFS partition directory (called at umount)
+ */
+int jffs_unregister_jffs_proc_dir(struct jffs_control *c)
+{
+	struct jffs_partition_dir *part_dir = jffs_part_dirs;
+	struct jffs_partition_dir *prev_part_dir = NULL;
+
+	while (part_dir) {
+		if (part_dir->c == c) {
+			/* Remove entries for partition */
+			remove_proc_entry (part_dir->part_info->name,
+				part_dir->part_root);
+			remove_proc_entry (part_dir->part_layout->name,
+				part_dir->part_root);
+			remove_proc_entry (part_dir->part_root->name,
+				jffs_proc_root);
+
+			/* Remove entry from list */
+			if (prev_part_dir)
+				prev_part_dir->next = part_dir->next;
+			else
+				jffs_part_dirs = part_dir->next;
+
+			/*
+			 * Check to see if this is the last one
+			 * and remove the entry from '/proc/fs'
+			 * if it is.
+			 */
+			if (jffs_part_dirs == part_dir->next)
+				remove_proc_entry ("jffs", proc_root_fs);
+
+			/* Free memory for entry */
+			kfree(part_dir);
+
+			/* Return happy */
+			return 0;
+		}
+
+		/* Move to next entry */
+		prev_part_dir = part_dir;
+		part_dir = part_dir->next;
+	}
+
+	/* Return unhappy */
+	return -1;
+}
+
+
+/*
+ * Read a JFFS partition's `info' file
+ */
+static int jffs_proc_info_read (char *page, char **start, off_t off,
+		int count, int *eof, void *data)
+{
+	struct jffs_control *c = (struct jffs_control *) data;
+	int len = 0;
+
+	/* Get information on the parition */
+	len += sprintf (page,
+		"partition size:     %08lX (%u)\n"
+		"sector size:        %08lX (%u)\n"
+		"used size:          %08lX (%u)\n"
+		"dirty size:         %08lX (%u)\n"
+		"free size:          %08lX (%u)\n\n",
+		(unsigned long) c->fmc->flash_size, c->fmc->flash_size,
+		(unsigned long) c->fmc->sector_size, c->fmc->sector_size,
+		(unsigned long) c->fmc->used_size, c->fmc->used_size,
+		(unsigned long) c->fmc->dirty_size, c->fmc->dirty_size,
+		(unsigned long) (c->fmc->flash_size -
+			(c->fmc->used_size + c->fmc->dirty_size)),
+		c->fmc->flash_size - (c->fmc->used_size + c->fmc->dirty_size));
+
+	/* We're done */
+	*eof = 1;
+
+	/* Return length */
+	return len;
+}
+
+
+/*
+ * Read a JFFS partition's `layout' file
+ */
+static int jffs_proc_layout_read (char *page, char **start, off_t off,
+		int count, int *eof, void *data)
+{
+	struct jffs_control *c = (struct jffs_control *) data;
+	struct jffs_fm *fm = NULL;
+	struct jffs_fm *last_fm = NULL;
+	int len = 0;
+
+	/* Get the first item in the list */
+ 	fm = c->fmc->head;
+
+	/* Print free space */
+	if (fm && fm->offset) {
+		len += sprintf (page, "00000000 %08lX free\n",
+			(unsigned long) fm->offset);
+	}
+
+	/* Loop through all of the flash control structures */
+	while (fm && (len < (off + count))) {
+		if (fm->nodes) {
+			len += sprintf (page + len,
+				"%08lX %08lX ino=%08lX, ver=%08lX\n",
+				(unsigned long) fm->offset,
+				(unsigned long) fm->size,
+				(unsigned long) fm->nodes->node->ino,
+				(unsigned long) fm->nodes->node->version);
+		}
+		else {
+			len += sprintf (page + len,
+				"%08lX %08lX dirty\n",
+				(unsigned long) fm->offset,
+				(unsigned long) fm->size);
+		}
+		last_fm = fm;
+		fm = fm->next;
+	}
+
+	/* Print free space */
+	if ((len < (off + count)) && last_fm
+	    && (last_fm->offset < c->fmc->flash_size)) {
+		len += sprintf (page + len,
+			       "%08lX %08lX free\n",
+			       (unsigned long) last_fm->offset + 
+				last_fm->size,
+			       (unsigned long) (c->fmc->flash_size -
+						    (last_fm->offset + last_fm->size)));
+	}
+
+	/* We're done */
+	*eof = 1;
+
+	/* Return length */
+	return len;
+}
diff --git a/fs/jffs/jffs_proc.h b/fs/jffs/jffs_proc.h
new file mode 100644
index 0000000..39a1c5d
--- /dev/null
+++ b/fs/jffs/jffs_proc.h
@@ -0,0 +1,28 @@
+/*
+ * JFFS -- Journaling Flash File System, Linux implementation.
+ *
+ * Copyright (C) 2000  Axis Communications AB.
+ *
+ * Created by Simon Kagstrom <simonk@axis.com>.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * $Id: jffs_proc.h,v 1.2 2000/11/15 22:04:12 sjhill Exp $
+ */
+
+/* jffs_proc.h defines a structure for inclusion in the proc-file system.  */
+#ifndef __LINUX_JFFS_PROC_H__
+#define __LINUX_JFFS_PROC_H__
+
+#include <linux/proc_fs.h>
+
+/* The proc_dir_entry for jffs (defined in jffs_proc.c).  */
+extern struct proc_dir_entry *jffs_proc_root;
+
+int jffs_register_jffs_proc_dir(int mtd, struct jffs_control *c);
+int jffs_unregister_jffs_proc_dir(struct jffs_control *c);
+
+#endif /* __LINUX_JFFS_PROC_H__ */