Documenation: update cgroup's document path
cgroup's document path is changed to "cgroup-v1". update it.
Signed-off-by: seokhoon.yoon <iamyooon@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
diff --git a/Documentation/cgroup-v1/cgroups.txt b/Documentation/cgroup-v1/cgroups.txt
index 947e6fe..308e5ff 100644
--- a/Documentation/cgroup-v1/cgroups.txt
+++ b/Documentation/cgroup-v1/cgroups.txt
@@ -2,7 +2,7 @@
-------
Written by Paul Menage <menage@google.com> based on
-Documentation/cgroups/cpusets.txt
+Documentation/cgroup-v1/cpusets.txt
Original copyright statements from cpusets.txt:
Portions Copyright (C) 2004 BULL SA.
@@ -72,7 +72,7 @@
tracking. The intention is that other subsystems hook into the generic
cgroup support to provide new attributes for cgroups, such as
accounting/limiting the resources which processes in a cgroup can
-access. For example, cpusets (see Documentation/cgroups/cpusets.txt) allow
+access. For example, cpusets (see Documentation/cgroup-v1/cpusets.txt) allow
you to associate a set of CPUs and a set of memory nodes with the
tasks in each cgroup.
diff --git a/Documentation/cgroup-v1/cpusets.txt b/Documentation/cgroup-v1/cpusets.txt
index e5cdcd4..e5ac5da86 100644
--- a/Documentation/cgroup-v1/cpusets.txt
+++ b/Documentation/cgroup-v1/cpusets.txt
@@ -48,7 +48,7 @@
job placement on large systems.
Cpusets use the generic cgroup subsystem described in
-Documentation/cgroups/cgroups.txt.
+Documentation/cgroup-v1/cgroups.txt.
Requests by a task, using the sched_setaffinity(2) system call to
include CPUs in its CPU affinity mask, and using the mbind(2) and
diff --git a/Documentation/cgroup-v1/memcg_test.txt b/Documentation/cgroup-v1/memcg_test.txt
index 8870b02..896a180 100644
--- a/Documentation/cgroup-v1/memcg_test.txt
+++ b/Documentation/cgroup-v1/memcg_test.txt
@@ -6,7 +6,7 @@
is complex. This is a document for memcg's internal behavior.
Please note that implementation details can be changed.
-(*) Topics on API should be in Documentation/cgroups/memory.txt)
+(*) Topics on API should be in Documentation/cgroup-v1/memory.txt)
0. How to record usage ?
2 objects are used.
@@ -256,7 +256,7 @@
You can see charges have been moved by reading *.usage_in_bytes or
memory.stat of both A and B.
- See 8.2 of Documentation/cgroups/memory.txt to see what value should be
+ See 8.2 of Documentation/cgroup-v1/memory.txt to see what value should be
written to move_charge_at_immigrate.
9.10 Memory thresholds
diff --git a/Documentation/filesystems/tmpfs.txt b/Documentation/filesystems/tmpfs.txt
index d9c11d2..a85355c 100644
--- a/Documentation/filesystems/tmpfs.txt
+++ b/Documentation/filesystems/tmpfs.txt
@@ -98,7 +98,7 @@
use at file creation time. When a task allocates a file in the file
system, the mount option memory policy will be applied with a NodeList,
if any, modified by the calling task's cpuset constraints
-[See Documentation/cgroups/cpusets.txt] and any optional flags, listed
+[See Documentation/cgroup-v1/cpusets.txt] and any optional flags, listed
below. If the resulting NodeLists is the empty set, the effective memory
policy for the file will revert to "default" policy.
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index a2a662d..b63f820 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -3547,7 +3547,7 @@
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
- See Documentation/cgroups/cpusets.txt.
+ See Documentation/cgroup-v1/cpusets.txt.
relative_sleep_states=
[SUSPEND] Use sleep state labeling where the deepest
@@ -3867,7 +3867,7 @@
swapaccount=[0|1]
[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
- it if 0 is given (See Documentation/cgroups/memory.txt)
+ it if 0 is given (See Documentation/cgroup-v1/memory.txt)
swiotlb= [ARM,IA-64,PPC,MIPS,X86]
Format: { <int> | force }
diff --git a/Documentation/kernel-per-CPU-kthreads.txt b/Documentation/kernel-per-CPU-kthreads.txt
index edec3a3..bbc3a8b 100644
--- a/Documentation/kernel-per-CPU-kthreads.txt
+++ b/Documentation/kernel-per-CPU-kthreads.txt
@@ -10,7 +10,7 @@
o Documentation/IRQ-affinity.txt: Binding interrupts to sets of CPUs.
-o Documentation/cgroups: Using cgroups to bind tasks to sets of CPUs.
+o Documentation/cgroup-v1: Using cgroups to bind tasks to sets of CPUs.
o man taskset: Using the taskset command to bind tasks to sets
of CPUs.
diff --git a/Documentation/scheduler/sched-deadline.txt b/Documentation/scheduler/sched-deadline.txt
index e114513..53a2fe1 100644
--- a/Documentation/scheduler/sched-deadline.txt
+++ b/Documentation/scheduler/sched-deadline.txt
@@ -431,7 +431,7 @@
-deadline tasks cannot have an affinity mask smaller that the entire
root_domain they are created on. However, affinities can be specified
- through the cpuset facility (Documentation/cgroups/cpusets.txt).
+ through the cpuset facility (Documentation/cgroup-v1/cpusets.txt).
5.1 SCHED_DEADLINE and cpusets HOWTO
------------------------------------
diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt
index f14f493..edd861c 100644
--- a/Documentation/scheduler/sched-design-CFS.txt
+++ b/Documentation/scheduler/sched-design-CFS.txt
@@ -215,7 +215,7 @@
These options need CONFIG_CGROUPS to be defined, and let the administrator
create arbitrary groups of tasks, using the "cgroup" pseudo filesystem. See
- Documentation/cgroups/cgroups.txt for more information about this filesystem.
+ Documentation/cgroup-v1/cgroups.txt for more information about this filesystem.
When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
group created using the pseudo filesystem. See example steps below to create
diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt
index 71b54d5..a03f0d9 100644
--- a/Documentation/scheduler/sched-rt-group.txt
+++ b/Documentation/scheduler/sched-rt-group.txt
@@ -133,7 +133,7 @@
to control the CPU time reserved for each control group.
For more information on working with control groups, you should read
-Documentation/cgroups/cgroups.txt as well.
+Documentation/cgroup-v1/cgroups.txt as well.
Group settings are checked against the following limits in order to keep the
configuration schedulable:
diff --git a/Documentation/vm/numa b/Documentation/vm/numa
index ade0127..e0b58c0 100644
--- a/Documentation/vm/numa
+++ b/Documentation/vm/numa
@@ -63,7 +63,7 @@
physical memory. NUMA emluation is useful for testing NUMA kernel and
application features on non-NUMA platforms, and as a sort of memory resource
management mechanism when used together with cpusets.
-[see Documentation/cgroups/cpusets.txt]
+[see Documentation/cgroup-v1/cpusets.txt]
For each node with memory, Linux constructs an independent memory management
subsystem, complete with its own free page lists, in-use page lists, usage
@@ -113,7 +113,7 @@
System administrators can restrict the CPUs and nodes' memories that a non-
privileged user can specify in the scheduling or NUMA commands and functions
-using control groups and CPUsets. [see Documentation/cgroups/cpusets.txt]
+using control groups and CPUsets. [see Documentation/cgroup-v1/cpusets.txt]
On architectures that do not hide memoryless nodes, Linux will include only
zones [nodes] with memory in the zonelists. This means that for a memoryless
diff --git a/Documentation/vm/numa_memory_policy.txt b/Documentation/vm/numa_memory_policy.txt
index badb050..622b927 100644
--- a/Documentation/vm/numa_memory_policy.txt
+++ b/Documentation/vm/numa_memory_policy.txt
@@ -9,7 +9,7 @@
support.
Memory policies should not be confused with cpusets
-(Documentation/cgroups/cpusets.txt)
+(Documentation/cgroup-v1/cpusets.txt)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
diff --git a/Documentation/vm/page_migration b/Documentation/vm/page_migration
index fea5c08..344d2d3 100644
--- a/Documentation/vm/page_migration
+++ b/Documentation/vm/page_migration
@@ -38,7 +38,7 @@
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset (See
-Documentation/cgroups/cpusets.txt).
+Documentation/cgroup-v1/cpusets.txt).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
diff --git a/Documentation/vm/unevictable-lru.txt b/Documentation/vm/unevictable-lru.txt
index fa3b527..4e565ed 100644
--- a/Documentation/vm/unevictable-lru.txt
+++ b/Documentation/vm/unevictable-lru.txt
@@ -122,7 +122,7 @@
--------------------------------
The unevictable LRU facility interacts with the memory control group [aka
-memory controller; see Documentation/cgroups/memory.txt] by extending the
+memory controller; see Documentation/cgroup-v1/memory.txt] by extending the
lru_list enum.
The memory controller data structure automatically gets a per-zone unevictable
diff --git a/Documentation/x86/x86_64/fake-numa-for-cpusets b/Documentation/x86/x86_64/fake-numa-for-cpusets
index 0f11d9be..4b09f18 100644
--- a/Documentation/x86/x86_64/fake-numa-for-cpusets
+++ b/Documentation/x86/x86_64/fake-numa-for-cpusets
@@ -8,7 +8,7 @@
amount of system memory that are available to a certain class of tasks.
For more information on the features of cpusets, see
-Documentation/cgroups/cpusets.txt.
+Documentation/cgroup-v1/cpusets.txt.
There are a number of different configurations you can use for your needs. For
more information on the numa=fake command line option and its various ways of
configuring fake nodes, see Documentation/x86/x86_64/boot-options.txt.
@@ -33,7 +33,7 @@
On node 3 totalpages: 131072
Now following the instructions for mounting the cpusets filesystem from
-Documentation/cgroups/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
+Documentation/cgroup-v1/cpusets.txt, you can assign fake nodes (i.e. contiguous memory
address spaces) to individual cpusets:
[root@xroads /]# mkdir exampleset